EECS C149/249A

December 18, 2014

Robotic Hand

AARON FELDMAN, CHANCE MARTIN, SHANG-LI Wu, SAMI MALEK
PrOFESSORS: EDWARD A. LEE, ALBERTO SANGIOVANNI-VINCENTELLI
Graduate Student INSTRUCTORS: ANTONIO IANNOPOLLO, BEN ZHANG, JoHN FINN

UNIVERSITY OF CALIFORNIA, BERKELEY

Abstract

The aim of this project is to designing and implementing a robotic hand that is controlled by a combination of sensor inputs
including electromyography and voice recognition. The goals will be accurate detection of voice commands, accurate detection
of hand gestures via an electromyographic device, and accurate response of the robotic hand to these inputs.

I. SysTEM MODEL

Microphone
VR EMG
Controller Controller

Hand
Controller

Robot
Hand

Figure 2: Robotic Hand System Model

Figure 1: 3D-Printed Robotic Hand Full System

Figure 2 contains the course grain overview of the sys-
tem model. We can see that there are three main inputs
to the hand controller: feedback from the hand, in-
put from the EMG controller, and input from the voice
recognition controller. This system model allowed us
to split the design and implementation into three parts
that we were able to complete in parallel.

II. HARDWARE

Robotic Hand

The robotics hand in our model, is derived from "In-
Moov," an open source 3D printed life size robot. Parts
for downloads are licensed under the attribution - Non
- Commercial - Creative Commons license (CC-BY-NC
3.0), in which we are free to share, adapt under the
attribution and non-commercial term. The parts we use
are the STL file (stereo lithography file format) of hands
and forearm.

Figure 3: Robotic Hand Close Up

EECS C149/249A

December 18, 2014

We contracted to the ME machine shop to 3D print
the plastic parts for both the hand and forearm. They
have a newer version of model material called ABS+,
according to the manufacturer this is a stronger, more
machinable ABS. They have 3 print options of density:
low density, high density, and solid. We choose high
density for our forearm, and solid for the other parts in
order to get enough structure strength. The parts are
printed in SST 1200ES with soluble support material.
The soluble support is more suitable for our design
since there are small holes in the design and the soluble
support material helps to preserve the holes during the
printing process.

Figure 4: TowerPro MG995 servomotor

Motors

Motors for robotics come in three main types: standard
DC motors, servo motors, and stepper motors. Because
the hand needs to be able to correctly position the fin-
gers, it is desirable to have motors with position control.
This limits the options to servo motors and stepper
motors. However the downside to stepper motors is
that if the motor controller is unpowered, it can be
difficult to maintain knowledge of the motors current
angle. In contrast a R/C servo motor determines its
position via a built in potentiometer and controller, thus
a R/C servo can determine its position even after a
power off. Since we were already planning on running
an mbed or arduino embedded system in the hand
and thus could handle the pulse width modulation
(pwm) signals necessary to drive a servo, we chose
this option for the motors. Considerations for choosing
the hand servos were price, footprint, torque, range
of degrees, and power consumption. We chose to go

with the TowerPro MG995 servos as these servos had
10.00 kg-cm at 4.8V of torque, had a small footprint,
operated at were low priced, had 180° range, operated
between 4V-6V, averaged 500mA, and were available
on Amazon, so we could get them quickly and start
building and testing.

Controllers

Figure 5: Raspberry Pi Model B

For the EMG controller we chose the Raspberry Pi
Model B. It has a 700 MHz ARM Core Processor with
512 MB SDRAM. This would allow us enough flexibil-
ity to run an operating system with a file system and
expanded ability to run different scripting languages
including Python. Furthermore, the Raspberry Pi has
two USB ports, necessary to connect a USB bluetooth
low energy (BLE) controller dongle to communicate
with the EMG sensor. The other being an easy way to
communicate with the robotic hand controller serially.

Figure 6: Arduino Mega 2560 R3 (ATmega2560)

For the hand controller we chose the Arduino AT-
mega2560. Timing is a critical issue with the servos
in the robotic hand. The signals are PWM and need
accurate hardware timing to provide the correct width
of high voltages. While PWM can be replicated by "bit-
banging" a GPIO pin, this does not guarantee accurate
timing and thus widths of the PWM pulses as a simple
print statement can tie up the processor longer than a
PWM pulse. The Arduino Mega provides 12 PWM pins
with hardware timing. This is more than the 5 we need
for the hand servos and also allows us the opportunity

EECS C149/249A

December 18, 2014

to use a few for LEDs.

Figure 7: TIGAL EasyVR Arduino Shield 2.0

For the voice recognition controller we chose the TIGAL
EasyVR Arduino Shield 2.0. The The EasyVR module
can be used with any host with an UART interface pow-
ered at 3.3V 4AS 5V. This allowed us to easily integrate
the system with the Arduino board. This system also
comes with command training software, allowing us to
use the voice commands module as a black box.

III. Power

A large challenge in powering the hand is maintaining
the correct voltage for each of the electrical components.
The Arduino can take anywhere from 5V - 20V so it is
the most flexible. The servos needed between 4V - 6V
and the Raspberry Pi needed 5V.

Figure 8: Faulty PWM Signal

However with we found that more than one servo
won’t work off the 5V power output from an Arduino
board as they could take up to 1.1A of current and that
was more than the Arduino could supply. When the
servos consumed more amperage than the Arduino
could supply, it produced erratic PWM signals which
in kind produced erratic servo behavior.

In order to solve this problem, we implemented a
power circuit to provide power to the servos with a
battery supply. But due to overcharging the battery
we supplied 7V to the servos and after burning a few
of their controller boards, we discovered they do not
operate very far outside of their rated voltages as can
be seen in the following figure. For future iterations,
we suggest more robust voltage regulation circuitry
to prevent overpowering of the Raspberry Pi and servos.

Figure 9: Burnt Servo Board

IV. VoOI1cE RECOGNITION

We considered using a Raspberry Pi as the voice recog-
nition controller. On the Raspberry Pi there are three
leading ways to perform voice recognition: Jasper 4AS
Voice Recognition Software, Raspberry Pi Voice Recog-
nition by Oscar Liang, Raspberry Pi Voice Control by
Steven Hickson. The voice control software packages by
Liang and Hickson both use Google APIs and as such
require the Raspberry Pi to be connected to the internet.
While this was within the capability of the Raspberry Pi
via a wireless controller, connecting to the internet was
something we didn’t want to do. We wanted to create
a self contained unit that could be used remotely if
possible and absent the internet. This left the Raspberry
Pi with the option of Jasper, which we implemented
and tested. We found however that Jasper wasn't

EECS C149/249A

December 18, 2014

as responsive on the Raspberry Pi as we were hoping
and it also consumed a lot of resources on the controller.

easyvr.setPinOutput(EasyVR::101, HIGH);
easyvr.recognizeCommand(group);
=TT
(]
1

int received = Serial.read() - '0';
proce

.
B
1

easyvr.setPinOutput(EasyVR::101, LOW)
Process_Word_or Command...

Figure 10: Software Flow Chart

This then led us to consider using alternative
controllers. We found a video by Patrick S
where he used a TIGAL EasyVR shield attached
to an Arduino to perform voice recognition:
https:/ /www.youtube.com/watch?v=zz6hT3kDhOc.
He used a robotic hand similar to the one we were
using and provided an instructions on his implemen-
tation. The EasyVR shield allowed us to process the
voice recognition separately from the Arduino, freeing
up its processing power so we could drive the servo
motors. However in testing, we found that this voice
recognition shield only provided about 40% accuracy in
recognizing words under good conditions, and worse
under adverse conditions.

For the next iteration of the voice controller, we suggest
a more controller with a more powerful processor, per-
haps a PCDuino which runs in the 1GHz range with
either Jasper or custom software. There are tutorials
online that suggest closer to a 80% accuracy range that
could be implemented.

V. ELECTROMYOGRAPHY

We considered multiple ways of implementing an elec-
tromyograph including building on from scratch or the

Arduino SHIELD-EKG-EMG which was inexpensive
but required placing electrodes on the arm and buying
disposable electrode stickies. Instead we found a group
on campus at UC Berkeley that had a beta developer
version of the Myo Armband. This armband could
be placed on the arm easily with no disposables, and
could easily be placed into the same position multiple
times.

However one problem was that we wanted access
to the raw data. The Myo firmware processed all the
data on the armband itself and then sent out prepro-
cessed data. Fortunately we were able to locate an
older firmware version (0.8.8.12) that allowed us ac-
cess to the raw data. With this we were able to find
an individual who had created a library to connect
to the Myo armband and process the data in Python:
https:/ / github.com/jwcrawley /myo-raw. He provides
this under the MIT license. However we found that this
package wouldn’t run on the Raspberry Pi. So in turn
we optimized the code and also disabled unnessary
things on the Raspberry Pi like the accelerometer that
were taking up processing power.

We trained 1000 samples for each of 8 gestures in
Python using the sklearn library with a kd-nearest
neighbor maching learning algorithm. This plotted
each gesture on an x-y graph. We then took 15 samples
of the gesture we were trying to determine, plotted it,
found the 25 closest training points and took a majority
vote to determine the gesture the Myo armband was
reading. We found in testing that we had over 85%
accuracy rate in determining the correct gesture. The
accuracy rate went up, closer to 100% with a limited set
of gestures that were uniquely different.

VI. TESTING

Motors

We found that more than one servo won’t work off
the 5V power output from an Arduino board, so we
implemented a power circuit to provide power to the
servos. We also found that even though the servos are
rated to have a 180° rotational range with a pulse width
between 1000-2000 us. However we found that at that
range it only had about 150° rotation. This worked out
in our favor because we realized that it is possible to eas-
ily adjust the pulse width range in the Arduino sketch
when attaching the servo: myservo.attach(9,544, 3550).
We found that a pulse width range of 544-3550 us pro-
vides about 190° of safe rotation for the servo. Greater
rotation appeared to be detrimental to the servos. It is

EECS C149/249A

December 18, 2014

our thought going forward that we will use this limit
of ranging to control the basics of the finger range to
keep them within a safe desired amount so there will
be no damage to the robotic hands wires or hardware.

Hand Control

Using the Matlab support package for Arduino, we’ve
been able to test the servos outside of the robotic hand,
so that we don’t damage the hand, and so that we were
able to get a jump start while a few things were being
finished on the hand. Since all of the basic movements
seem to be ok, we're looking into adding the ability to
not just select hand positions, but being able to grasp
things. We’re considering two further options, one
being built in finger tip sensors, or possibly another
in that we get feedback that the position of the servos
don’t change after some small amount of time, thus
meaning that the servos encountered an obstruction
(the object being grasped). Since we’ve used 40lb test
fishing string, this will act as a possible way to grasp
things.

ARDUINC

L o R

pinky angle Pin 3
Standard Servo Writed

ARDUINO

L} o ¥

ring finger angle Pin 5
Standard Servo Write3
ARDUINOG

L o

middle finger angle Pin &
Standard Servo Write

ARDUINO

L T

infex finger angle Pin 9
Standard Serve Write2

ARDUINO

¥

Pin 10
Standard Servo Writel

Pl >

thumb angle

Figure 11: TowerPro MG995 servomotor

Communication between Controllers

We were able to test communication between the Rasp-
berry Pi and the Arduino board over USB serial com-
munication. We built a sending function in Python on
the Raspberry Pi and a receiving function in C on the
Arduino. This allowed us to turn on and off LEDs. This
testing allowed us to determine that the Raspberry Pi
and Arduino could send and receive bytes before the
EMG controller software was finished. Similarly we
tested commands on the voice recognition controller to
the Arduino hand controller.

EECS C149/249A December 18, 2014

REFERENCES
[1] http://it.wikipedia.org/wiki/InMoov
[2] http://www.inmoov.fr/hand-and-forarm/
[3] http://www.me.berkeley.edu/new /Shop/FDM_protocol.pdf
[4] https://github.com/jwcrawley/myo-raw
[5] http://www.protoparadigm.com/news-updates/the-difference-between-abs-and-pla-for-3d-printing/
[6] http://www.servodatabase.com/servo/towerpro/mg995
[7] http:/ /www.amci.com/tutorials/tutorials-stepper-vs-servo.asp

[8] http://arduino.cc/en/Tutorial/SecretsOf ArduinoPWM

EECS C149/249A

December 18, 2014

CODE TITLE

Servo Drive Function

// Drive function to control servo speed and reduce current draw

void drive (Servo curr_servo, int target_pos,

int curr_pos = curr_servo.read();
if (curr_pos < target_pos) {
for (; curr_pos < target_pos;) {

curr_servo.write (++curr_pos);
delay (s_speed) ;
}

// Backoff five to reduce servo current
delay (500);
curr_servo.write (curr_servo.read() — 5);
} else {
for (; curr_pos > target_pos;) {
curr_servo.write(——curr_pos) ;
delay (s_speed) ;
}
// Backoff five to reduce servo current
delay (500);
curr_servo.write (curr_servo.read() + 5);

int s_speed) {

draw

draw

Arduino.ino

1
2
3
4
5
6
7
8
9

#if defined (ARDUINO) && ARDUINO > 100
#include "Arduino.h"
#include "Platform.h"
#include "SoftwareSerial.h"
#include "Servo.h"
#include "WProgram.h"
#include "NewSoftSerial.h"
NewSoftSerial port (12,13);

#fendif

#include "EasyVR.h"
EasyVR easyvr (port) ;

// Groups

enum Groups {
GROUP_O 0,
GROUP_1 =1,
}i

enum GroupO {
GO_HAND = O,
}i

enum Groupl

{
G1_GO_BEARS =
G1_STANFORD =
G1_HANG_LOOSE = 2,
G1_PEACE = 3,
G1_THUMBS_UP
G1_RELAX = 5,
G1_OPEN = 6,
G1_ROCK_ON = 7,
G1_POINT = 8,
Gl_WAVE = 9,
Gl1_CLOSE = 10,
G1_COME_HERE

bi

I
= O
~

Il
N
~

11,

EECS C149/249A

December 18, 2014

40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

int8_t group, idx;
Servo myservol, myservo2, myservo3, myservo4,

//Myo mappings

/ *
0 —> rest
1 —> fist (not contracted)
2 —> pinky to thumb (CONTRACT)
3 —> point (not contracted)
4 —> thumbs up (not contracted
5 —> peace (palm towards out)
6X ——>
TX——>
8 —> open wide (don't contract)
*/
//Myo_funcs
void restl2() {
myservol.write (100);
delay (50) ;

myservo2.write (80);

void zero() { //rest
myservol.write (100);
delay (50) ;
myservo5.write (100);
delay (50) ;
myservo4.write (50);
delay (50);
myservo2.write (80);
myservo3.write (80);
delay (50) ;
myservol.write (130);

}

void one() { //fist
myservol.write (100);
delay (100);
myservo2.write (150);
myservo3.write (150);
myservod.write (150);
delay (100);
myservo5.write (150);
delay (100);
myservol.write (150);

}

void two () { //pinky_to_thumb
myservo5.write (100);
myservol.write (100);
delay (100);
myservo2.write (0);
myservo3.write (0);
myservod.write (0);
delay (200);
myservo5.write (150);
myservol.write (150);

}

void three() { //point
myservol.write (100);
myservo3.write (150);
delay (100);
myservo2.write (0);
delay (50) ;
myservod.write (150);
delay (50) ;

myservob;

EECS C149/249A December 18, 2014

107 myservo5.write (150);
108 delay (50) ;

109 myservol.write (150);
10 }

m void four() { //thumbs_up
112 myservol.write (0);
113 myservo2.write (145);
114 myservo3.write (145);
115 myservod.write (145);
116 myservob.write (145);
17}

us void five() { //peace

119 restl2();

120 delay (100);

121 myservol.write (145);
122 myservo2.write (0);
123 myservo3.write (0);
124 myservod.write (145);
125 myservo5.write (145);
126 }

127
128
129 void six() { //middle finger

130 restl2();

131 delay (100);

132 myservol.write (100);
133 delay (100);

134 myservo2.write (150);
135 myservo3.write (0);
136 myservod.write (150);
137 delay (100);

138 myservo5.write (150);
139 delay (100);

140 myservol.write (150);
141}

142 void seven() {

143}

144 void eight () { //open_wide
145 myservol.write (0);
146 myservo2.write (0);
147 myservo3.write (0);
148 myservod.write (0);
149 myservo5.write (0);
150 }

151 void nine () {

152}

153

154 void process (int received) {
155

156 1if(received > 4){

157 if (received > 6){ // >6

158 if (received > 8){ // 9
159 Serial.println(9);

160 nine();

161 }

162 else{ // > 6 <8

163 if (received>7){ // 8
164 Serial.println(8);

165 eight () ;

166 }

167 else{ // 1

168 Serial.println(7);

169 seven () ;

170 }

171 }

172 }

173 else{ // 4 < received < 6

December 18, 2014

EECS C149/249A

174 if (received > 5) {

175 Serial.println(6);
176 six () ;

177 }

178 else{

179 Serial.println(5);
180 //5

181 five();

182 }

183 }

184 }

185 else{ // received <4

186 1if(received <2){

187 if (received <1){ // 1 or O
188 if (received > 0) {

189 // 1

190 Serial.println(1l);
191 one () ;

192 }

193 else{

194 //0

195 Serial.println(0);
196 zero () ;

197 }

198 }

199 else{ // > 1 <2

200 // 2

201 Serial.println(2);
202 two () ;

203 }

204 }

205 else{ // 2< <4

206 if (received > 3){

207 Serial.println(4);
208 four();

209 // 4

210 }

211 else{

212 // 3

213 Serial.println(3);
214 three();

215 }

216 }

217 }

218}

219

220

21 void setup () {

222 Serial.begin(9600);

23 myservol.attach(3); //thumb
224 myservo2.attach(4); //index
225 myservo3.attach(5); //middle
226 myservod.attach(6); //ring
227 myservo5.attach(7); //pinky
228 pinMode (8, OUTPUT) ;

229 pinMode (11, OUTPUT) ;

230
231 port.begin (9600) ;
232

233 while ('easyvr.detect()) {

234 Serial.println("EasyVR not detected!");
235 delay (1000);

236 }

237

238 easyvr.setPinOutput (EasyVR::I01, LOW) ;

239 Serial.println ("EasyVR detected!");

240 easyvr.setTimeout (5);

10

EECS C149/249A December 18, 2014

241 easyvr.setLanguage (0) ;

242 group = EasyVR::TRIGGER; //<—— start group (customize)
243

244}

245
246 void action();
247

248 void loop () {

249 if (Serial.available()) {

250 //1light (Serial.read() — '0");

251 int received = Serial.read() — '0';
252 process (received) ;

253 }

254 else {

255 easyvr.setPinOutput (EasyVR::I01, HIGH); // LED on (listening)
256 Serial.print ("Say a command in Group ");
257 Serial.println (group) ;

258 easyvr.recognizeCommand (group) ;

259

260 while (!easyvr.hasFinished());

261 easyvr.setPinOutput (EasyVR::I01, LOW); // LED off
262 idx = easyvr.getWord() ;

263

264 if (idx > 0) {

265

266 // built—in trigger (ROBOT)

267 group = GROUP_1;

268

269 return;

270

271 }

272

273 idx = easyvr.getCommand() ;

274

275 if (idx > 0) |

276

277 // print debug message

278

279 uint8_t train = 0;

280

281 char name[32];

282

283 Serial.print ("Command: ");

284

285 Serial.print (idx);

286

287 if (easyvr.dumpCommand (group, idx, name, train))
288

289 {

290

291 Serial.print (" = ");

292

293 Serial.println (name);

294

295 }

296

297 else

298

299 Serial.println();

300

301 easyvr.playSound (0, EasyVR::VOL_FULL) ;
302

303 // perform some action

304

305 action () ;

306

307 }

11

EECS C149/249A

December 18, 2014

308

309 else // errors or timeout
310

311 {

312

313 if (easyvr.isTimeout ())
314

315 Serial.println("Timed out, try again...
316

317 intl6_t err = easyvr.getError();
318

319 if (err > 0)

320

321 {

322 digitalWrite (11,HIGH);
323 delay (1000);

324 digitalWrite (11, LOW) ;
325

326 Serial.print ("Error ");
327

328 Serial.println(err, HEX);
329

330 }

331

332 }

333

334 }

335}

336

337 void action() {

338

339 switch (group) {

340

341 case GROUP_O:

342 switch (idx)

343 {

344 case GO_HAND:

345

346 digitalWrite (8,HIGH) ;
347 group =GROUP_1;

348

349 break;

350 }

351 break;

352 case GROUP_1:

353 switch (idx)

354 {

355 case G1l_GO_BEARS:

356

357 myservo2.write (150);
358 myservo3.write (150);
359 myservod.write (150);
360 myservo5.write (150);
361 myservol.write (150);
362 delay (3);

363 myservol.write (145);
364 myservo2.write (145);
365 myservo3.write (145);
366 myservod.write (145);
367 myservo5.write (145);
368

369 break;

370 case G1_STANFORD:

371

372 restl2();

373 delay (100);

374 myservol.write (145);

12

EECS C149/249A

December 18, 2014

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

145) ;
15);
145);
145) ;

myservo2.write
myservo3.write
myservo4.write

(
(
(
myservo5.write (

break;

case G1_HANG_LOOSE:

myservol.write (0)
myservo2.write (14
myservo3.write (14
myservo4d.write (14
myservo5.write (0)

break;

case Gl_PEACE:

restl2();
delay (100);
myservol.write (1
myservo2.write (0
myservo3.write (0);
myservod.write (1
myservo5.write (1

break;

case G1_THUMBS_UP:

restl2();
delay (100);
myservol.write (0);
myservo2.write (145)
myservo3.write (145);
myservo4d.write (145)
myservoS.write (145)

break;

case Gl_RELAX:

zero () ;

break;

case G1_OPEN:

myservol.write (0)
myservo2.write (0)
myservo3.write (0);
myservo4.write (0)
myservo5.write (0)

break;

case G1_ROCK_ON:

restl2();
delay (100);
myservol.write (1
myservo2.write (0
myservo3.write (150);
myservo4.write (1
myservo5.write (0

break;

case G1_POINT:

myservol.write (150);
myservo2.write (0);
myservo3.write (150);

13

EECS C149/249A

December 18, 2014

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

myservod.write (150);
myservo5.write (150);

break;
case Gl_WAVE:
myservol.write (0
myservo2.write (0
myservo3.write (0
(2
(0

myservo4d.write
myservob.write ;
break;

case G1_CLOSE:
myservol.write (150);
myservo2.write (150);

’

150
150

()
()

myservo3.write (150);
myservo4.write ()
()

myservo5.write ;

break;
case G1_COME_HERE:

restl2();

delay (100);
myservol.write (150);
myservo2.write (0);
myservo3.write (150);
myservod.write (150);
myservo5.write (150);
drive (myservo2,70,4);
drive (myservo2,0,4);
drive (myservo2,70,4);
drive (myservo2,0,4);
drive (myservo2,70,4);
drive (myservo2,0,4);
drive (myservo2,70,4);
drive (myservo2,0,4);

break;

}

break;

Train Gestures

1
2
3
4
5
6
7
8
9

from __ future__ import print_function

from collections import Counter
import struct
import sys
import time
import numpy as np
FIST = 5
PINKY = 4
SPREAD = 3
FLEX = 2
EXTEND = 1
try:
from sklearn import neighbors,
HAVE_SK = True
except ImportError:
HAVE_SK = False

try:

svm

EECS C149/249A

December 18, 2014

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86

import pygame
from pygame.locals import x
HAVE_PYGAME = True
except ImportError:
HAVE_PYGAME = False

from common import =x
import myo

class EMGHandler (object) :

def _ _init_ (self, m):
self.recording = —1
self.m =m
self.emg = (0,) * 8

def _ _call__ (self, emg, moving):

self.emg = emg
if self.recording > 0:
self.m.cls.store_data(self.recording, emg)

if _ _name__ == '__main__ ':
if HAVE_PYGAME:
pygame.init ()
w, h = 800, 320
scr = pygame.display.set_mode ((w, h))

font = pygame.font.Font (None, 30)

m = myo.Myo (myo.NNClassifier(), sys.argv[l] if len(sys.argv) > 2 else None)
hnd = EMGHandler (m)
m.add_emg_handler (hnd)
m.connect ()
pressedr = None
rcounter = 0
rtime = 10
rcutoff = 23
pressedkeys = [None]
try:

while True:

m.run()

r = m.history_cnt.most_common (1) [0] [0]
if m.history_cnt[r] > rcutoff:

if pressedr != r:
pressedr = r
rcounter = 0

else:

rcounter += 1
if rcounter > rtime:
if pressedkeys[—1] != r:
print ('pressed', r)
pressedkeys.append(r)
if len(pressedkeys) > 20:
pressedkeys.pop (0)
if HAVE_PYGAME:
for ev in pygame.event.get () :

if ev.type == QUIT or (ev.type == KEYDOWN and ev.unicode ==
raise KeyboardInterrupt ()
elif ev.type == KEYDOWN:

if K0 < ev.key < K_9:
hnd.recording = ev.key — K_0O
elif K _KPO < ev.key < K_KP9:

hnd.recording = ev.key — K_KpO
elif ev.unicode == 'r':
hnd.cl.read_data()
elif ev.type == KEYUP:
if K 0 < ev.key < K_9 or K_KPO < ev.key < K_KP9:

hnd.recording = —1

U

a'):

15

EECS C149/249A December 18, 2014

87

88 scr.fil1((0, 0, 0), (0, 0, w, h))

89

90 for i in range (10):

91 x =0

92 y =0 + 30 % 1

93

94 clr = (0,200,0) if i == r else (255,255,255)

95

9% txt = font.render ('$5d' % (m.cls.Y == 1i).sum(), True, (255,255,255))

97 scr.blit (txt, (x + 20, vy))

98

99 txt = font.render('%d' % i, True, clr)

100 scr.blit (txt, (x + 110, vy))

101

102

103 scr.fi11((0,0,0), (x+130, y + txt.get_height() / 2 — 10, len(m.history) =* 20,
20))

104 scr.fill (clr, (x+130, y + txt.get_height() / 2 — 10, m.history_cnt[i] % 20, 20))

105

106 if HAVE_SK and m.cls.nn != None:

107

108 dists, inds = m.cls.nn.kneighbors (hnd.emg)

109 for i, (d, ind) in enumerate(zip(dists[0], inds[0])):

110 y = m.cls.Y[myo.NUMSAMPLES*ind]

111 text (scr, font, '%d %6d' % (y, d), (650, 20 * 1))

112

113 pygame.display.flip ()

114 else:

115 for i in range (10):

116 if i == r: sys.stdout.write('\x1lb[32m")

117 print (i, '—' * m.history_cnt[i], '"\xIb[K")

118 if 1 == r: sys.stdout.write('\xlb[m")

119 sys.stdout.write ("\x1b[11A")

120 print ()

121

122 except KeyboardInterrupt:

123 pass

124 finally:

125 m.disconnect ()

126 print ()

127

128 if HAVE_PYGAME:

129 pygame.quit ()

Classify Gesture

1 from __ future__ import print_function

import re
import struct

import threading

2

3

4

5 import sys
6

7 import time
8

9

import serial
10 from serial.tools.list_ports import comports

12 from common import =

14 def multichr (ords) :

15 if sys.version_info[0] > 3:

16 return bytes (ords)

17 else:

18 return ''.Jjoin (map (chr, ords))

20 def multiord(b):

EECS C149/249A

December 18, 2014

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

if sys.version_info[0] > 3:
return list (b)

else:
return map (ord, b)

class Packet (object) :

def _ _init_ (self, ords):
self.typ = ords[O0]
self.cls = ords[2]

self.cmd = ords[3]
self.payload = multichr (ords[4:])

def __repr__ (self):
return 'Packet ($02X, %02X, %02X, [%s])' % \
(self.typ, self.cls, self.cmd,
' '".join('%02X"'" % b for b in multiord(self.payload)))

class BT (object) :

'""Implements the non—Myo—specific details of the Bluetooth protocol.'''

def __init__ (self, tty):
self.ser = serial.Serial (port=tty, baudrate=9600, dsrdtr=1)
self.buf = []
self.lock = threading.Lock ()
self.handlers = []

internal data—handling methods
def recv_packet (self, timeout=None) :

t0 = time.time ()
try:
self.ser.timeout = timeout
except:
print ('recv timeout error')
pass
while timeout is None or time.time() < t0 + timeout:
if timeout is not None:
self.ser.timeout = t0 + timeout — time.time ()
c = self.ser.read()
if not c:

print ("found serial None")
return None

ret = self.proc_byte (ord(c))

if ret:
if ret.typ == 0x80:
try:
self.handle_event (ret)
except:

return
return ret

def recv_packets(self, timeout=1.0):

res = []
t0 = time.time ()
while time.time () < t0 + timeout:
p = self.recv_packet (t0 + timeout — time.time())

if not p: return res
res.append (p)
return res

def proc_byte(self, c):
if not self.buf:
if ¢ in [0x00, 0x80, 0x08, 0x88]:
self.buf.append(c)
return None
elif len(self.buf) ==

17

EECS C149/249A

December 18, 2014

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

18

self.buf.append(c)
self.packet_len = 4 + (self.buf[0] & 0x07) + self.buf[l]
return None
else:
self.buf.append(c)

if self.packet_len and len(self.buf) == self.packet_len:
p = Packet (self.buf)
self.buf = []

return p
return None

def handle_event (self, p):
for h in self.handlers:
h(p)

def add_handler(self, h):
self.handlers.append (h)

def remove_handler (self, h):
try: self.handlers.remove (h)

except ValueError: pass

def wait_event (self, cls, cmd):

res = [None]
def h(p):
if p.cls == cls and p.cmd == cmd:
res[0] =p

self.add_handler (h)
while res[0] is None:

self.recv_packet ()
self.remove_handler (h)
return res|[0]

specific BLE commands
def connect (self, addr):
return self.send_command(6,

w

, pack ('6sBHHHH', multichr (addr),

def get_connections (self):
return self.send_command (0, 6)

def discover (self):
return self.send_command (6, 2, b'\x01")

def end_scan(self):
return self.send_command (6, 4)

def disconnect (self, h):
return self.send_command (3,

o

, pack('B', h))

def read_attr(self, con, attr):
self.send_command (4, 4, pack('BH', con, attr))
return self.wait_event (4, 5)

def write_attr(self, con, attr, val):
self.send_command (4, 5, pack('BHB', con, attr, len(val)) + val)
return self.wait_event (4, 1)

def send_command(self, cls, cmd, payload=b'', wait_resp=True):
s = pack ('4B', 0, len(payload), cls, cmd) + payload
self.ser.write (s)

while True:
p = self.recv_packet ()

no timeout, so p won't be None
if p.typ == 0: return p

0, 6, 6, 64,

0))

EECS C149/249A

December 18, 2014

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

not a response: must be an event
self.handle_event (p)

class MyoRaw (object) :
'""Implements the Myo—specific communication protocol.'''

def __init__ (self, tty=None):
if tty is None:
tty = self.detect_tty()
if tty is None:
raise ValueError ('Myo dongle not found!")

self.bt = BT (tty)
self.emg_handlers = []
self.imu_handlers

def detect_tty(self):
for p in comports() :
if re.search(r'PID=2458:0%1"', p[2]):

print ('using device:', pl[0])
return p[0]

return None

def run(self):
self.bt.recv_packet ()

def connect (self):
stop everything from before
self.bt.end_scan()
self.bt.disconnect (0)
self.bt.disconnect (1)
self.bt.disconnect (2)

start scanning
print ('scanning...")
self.bt.discover ()
while True:
p = self.bt.recv_packet ()
print ('scan response:', p)
if p.payload[l5:] == .
b'\x06\x42\x48\x12\x4A\x7TF\x2C\x48\x47\xBI\xDE\x04\xA9\x01\x00\x06\xD5":
addr = list (multiord(p.payload[2:8]))
break
self.bt.end_scan()

connect and wait for status event
conn_pkt = self.bt.connect (addr)

self.conn = multiord(conn_pkt.payload) [—1]
self.bt.wait_event (3, 0)

get firmware version

fw = self.bt.read_attr(self.conn, 0x17)

v _+ _+ _, Vv0O, vl, v2, v3 = unpack ('BHBBHHHH', fw.payload)
print ('firmware version: %d.%d.%d.%d' $ (v0, vl, v2, v3))

don't know what these do; Myo Connect sends them, though we get data
fine without them

self.bt.write_attr(self.conn, 0x19, b'\x01\x02\x00\x00")
self.bt.write_attr(self.conn, 0x2f, b'\x01\x00")
self.bt.write_attr(self.conn, 0x2c, b'\x01\x00")
self.bt.write_attr(self.conn, 0x32, b'\x01\x00")
self.bt.write_attr(self.conn, 0x35, b'\x01\x00")

enable EMG data

19

EECS C149/249A December 18, 2014

21 self.bt.write_attr(self.conn, 0x28, b'\x01\x00"')

222 ## enable IMU data

23 self.bt.write_attr(self.conn, 0xld, b'\x01\x00")

224

225 ## Sampling rate of the underlying EMG sensor, capped to 1000. If it's
226 ## less than 1000, emg_hz is correct. If it is greater, the actual

27 ## framerate starts dropping inversely. Also, if this is much less than
228 ## 1000, EMG data becomes slower to respond to changes. In conclusion,
229 ## 1000 is probably a good value.

230 C = 1000

231 emg_hz = 50

232 ## strength of low—pass filtering of EMG data

233 emg_smooth = 100

234

235 imu_hz = 50

236

237 ## send sensor parameters, or we don't get any data

238 self.bt.write_attr(self.conn, 0x19, pack('BBBBHBRBBBB', 2, 9, 2, 1, C, emg_smooth, C //

emg_hz, imu_hz, 0, 0))
239

240 ## add data handlers

241 def handle_data(p) :

242 # print (len(p.payload[:41]))

243 c, attr, typ = unpack('BHB', p.payload[:4])
244 pay = p.payload[5:]

245

246 if attr == 0x27:

247 vals = unpack ('8HB', pay)

248 ## not entirely sure what the last byte is, but it's a bitmask that
249 ## seems to indicate which sensors think they're being moved around or
250 ## something

251 emg = vals[:8]

252 moving = vals[8]

253 self.proc_emg(emg, moving)

254 if attr == Oxlc:

255 vals = unpack('10h', pay)

256 quat = vals[:4]

257 acc = vals[4:7]

258 gyro = vals[7:10]

259 self.proc_imu(quat, acc, gyro)

260

261 self.bt.add_handler (handle_data)

262

263

264 def disconnect (self):

265 self.bt.disconnect (self.conn)

266

267

268 def vibrate(self, length):

269 if length in xrange(1l, 4):

270 ## first byte tells it to vibrate; purpose of second byte is unknown
271 self.bt.write_attr(self.conn, 0x19, pack('3B', 3, 1, length))
272

273

274 def add_emg_handler (self, h):

275 self.emg_handlers.append (h)

276

277 def add_imu_handler (self, h):

278 self.imu_handlers.append (h)

279

280 def proc_emg(self, emg, moving) :

281 for h in self.emg_handlers:

282 h (emg, moving)

283

284 def proc_imu(self, quat, acc, gyro):

285 for h in self.imu_handlers:

286 h(quat, acc, gyro)

20

EECS C149/249A December 18, 2014

287
288

29 if _ _name_ == '__main__ ':

290 try:

291 import pygame

292 from pygame.locals import =

293 HAVE_PYGAME = True

294 except ImportError:

295 HAVE_PYGAME = False

296

297 if HAVE_PYGAME:

298 w, h = 1200, 400

299 scr = pygame.display.set_mode ((w, h))

300

301 last_vals = None

302 def plot (scr, vals):

303 DRAW_LINES = False

304

305 global last_vals

306 if last_vals is None:

307 last_vals = vals

308 return

309

310 D=5

311 scr.scroll(—D)

312 scr.fi111((0,0,0), (w —D, 0, w, h))

313 for i, (u, v) in enumerate(zip(last_vals, vals)):
314 if DRAW_LINES:

315 pygame.draw.line(scr, (0,255,0),

316 (w — D, int(h/8 % (i+1 — u))),
317 (w, int (h/8 * (i+1 — v))))
318 pygame.draw.line(scr, (255,255,255),

319 (w — D, int(h/8 = (i+1))),
320 (w, int (h/8 * (i+1))))

321 else:

322 c = int (255 * max (0, min(1l, v)))

323 scr.fill((¢c, ¢, ¢), (w—D, i »h / 8, D, (L1 +1) * h / 8 —1 % h / 8));
324

325 pygame.display.flip ()

326 last_vals = vals

327

328 m = MyoRaw(sys.argv[l] if len(sys.argv) > 2 else None)
329

330 def proc_emg(emg, moving, times=[]):

331 if HAVE_PYGAME:

332 ## update pygame display

333 plot (scr, [e / 2000. for e in emg])

334 else:

335 print (emg)

336

337 ## print framerate of received data

338 times.append(time.time ())

339 if len(times) > 20:

340 #print ((len(times) — 1) / (times[—1] — times[0]))
341 times.pop(0)

342

343 m.add_emg_handler (proc_emg)

344 m.connect ()

345

346 try:

347 while True:

348 m.run ()

349

350 if HAVE_PYGAME:

351 for ev in pygame.event.get () :

352 if ev.type == QUIT or (ev.type == KEYDOWN and ev.unicode == 'q'):
353 raise KeyboardInterrupt ()

21

EECS C149/249A December 18, 2014

354 elif ev.type == KEYDOWN:

355 if K 1 < ev.key < K_3:

356 m.vibrate (ev.key — K_0)
357 if K _KP1l < ev.key < K_KP3:
358 m.vibrate (ev.key — K_KPO)
359

360 except KeyboardInterrupt:

361 pass

362 finally:

363 m.disconnect ()

364 print ()

Matlab Test Script

1 %% RUN ONCE AT BEGINNING TO SETUP CONNECTION
2 clear all

3 clc

4

5 % set up arduino connection

6 comPort = '/dev/tty.usbmodeml4ll"';

7 arduino=serial (comPort, 'BaudRate', 9600) ;

8

9 % connect to arduino

10 try

1 fopen (arduino) ;

12 catch ME,

13 disp (ME.message)

14 delete (arduino) ;

15 error (['Could not open port: ' comPort]);
16 end

18 %% RUN THIS PART FOR THE MATLAB GUI

20 % 1t takes several seconds before any operation could be attempted
21 fprintf(1l, 'Attempting connection .'");
2 for i=1:2,

23 pause (0.5) ;
24 fprintf(1,"'.");
25 end

2% fprintf(l,'\n");

28 % flush serial buffer before sending anything
29 val=—1;

30 if arduino.BytesAvailable > 0,

31 val=fread (arduino, arduino.BytesAvailable);
32 end

34 % set command variables

35 mode = 1;

36 angle = 40;

37 speed = 10; % larger —> slower

39 % send commands to arduino

4 fwrite(arduino, mode, 'int8'");
41 fwrite(arduino, angle, 'int8'); % limited to 128
2 fwrite(arduino, speed, 'int8'")

4
4 %% RUN ONCE AT END TO CLOSE

4 fclose(arduino);
47 delete(instrfind('Type', 'serial'));

Arduino Test Script

1 #include <Servo.h>
2
3 int angle = 45;

22

December 18, 2014

EECS C149/249A
4 1int mode = 0;
5 int servo_speed = 15;
6 Servo myservoL;
7 Servo myservoR;
8
9 void setup() {

Serial.begin(9600);
myservoL.attach (9, 544, 3550);
myservoR.attach (8, 544, 3550);

void loop () {
// if there is data to read

if (Serial.available() > 2) {
mode = Serial.read(); // read data
angle = Serial.read(); // read data

servo_speed = Serial.read(); // read data
switch (mode) {
case 1:
testl (angle, servo_speed);
break;
case 2:
test2 (angle, servo_speed);
break;
case 3:
test3 (angle, servo_speed);
break;
default : /x Optional */

’

// Set the servo to the target angle
// TODO: set up if curr angle == last angle stop
void drive (Servo curr_servo, int target_pos, int

int curr_pos = curr_servo.read();
if (curr_pos < target_pos) {
for (; curr_pos < target_pos;) {

curr_servo.write (++curr_pos);
delay (s_speed) ;
}

} else {
for (; curr_pos > target_pos;) {
curr_servo.write(——curr_pos);

delay (s_speed) ;

void testl (int ang, int s_speed) {
// myservoL.write (90);
drive (myservol, ang, s_speed);

void test2(int ang, int s_speed) {
myservoL.write (90);

void test3(int ang, int s_speed) {
myservoL.write (180);

to reduce holding buzz.

s_speed)

{

23

	System Model
	Hardware
	Power
	Voice Recognition
	Electromyography
	Testing

