
1

WiFinder, a Wifi Signal Intensity Mapping Robot
Chaitanya Aluru, Sean Roberts, and Eric Wu

I. INTRODUCTION

The goal of the WiFinder project is to develop a robot that
will find the strongest 802.11 signal in a room. In order to
do this, the robot first maps out the 802.11 signal intensity
using RSSI measurements, and then find the position of
maximal signal strength intensity within the mapped area. In
doing so, the robot implicitly solve the localization problem
over a large, two dimensional grid. This requires the careful
integration of several sensors, and precise control over the
robot’s movements. Here, we describe the implementation of
our robot, model the behavior of the sensors used to localize
and control the robot, and simulate the errors that arise due to
imperfect sensor readings and errors in control.

The GitHub repository for this project is https://github.com/
wueric/WifiRobot, and the demonstration video for the project
is located at http://youtu.be/C c6Be1Nw74.

II. MAXIMAL SIGNAL STRENGTH ALGORITHMS

We manually constructed several spatial maps of RSSI,
which are shown below. We conducted measurements in mul-
tiple passes, to determine the amount of variability in signal
intensity. While the general shapes of the spatial signal profile
were approximately the same for the two passes, there were
also major differences. These differences in the shape of the
profile suggest that 802.11 signal strength is quite variable and
unpredictable, making hill-climbing and other such algorithms
infeasible and unlikely to result in finding a point of maximal
strength.

As a result, we implemented simple, search-and-maximize
algorithm. Rather than dynamically determine where to search,
the algorithm prescribes a fixed rectangular grid pattern for the
robot to trace out. The robot measures RSSI signal intensity
at fixed distances along this grid, and then returns to the point
of maximal signal intensity at the end of its search.

These algorithms were implemented using a state machine
architecture, similar to the ones implemented in the course
labs.

III. HARDWARE AND FIRMWARE

Our wifi-seeking robot was based upon the iRobot Create
platform, manufactured by iRobot corporation. Our primary
computational platform for the project was the Freescale
KL25Z ARM microcontroller running the mbed framework.
The iRobot Create was interfaced to the mbed board using
a serial port. Because the iRobot Create required 5 V input
signals, we were required to use a Sparkfun logic level
converter to interface the iRobot with the mbed electrically.
The serial connection between the iRobot and the mbed board
was implemented using the Serial framework developed by the
mbed team. Instructions were sent to robot using the iRobot

Fig. 1. Photograph of the iRobot Create electronics bay. The Maxbotix
LV-EZ1 is on the forward-facing breadboard and is used to sense distance
travelled. Inside the electronics bay we have a Honeywell HMC5883L mag-
netometer, an Adafruit CC3000 WiFi breakout board, a SparkFun BlueSMiRF
Bluetooth modem, and a SparkFun logic level converter. All of these devices
are integrated with a Freescale KL25Z microcontroller running the mbed
platform.

Create Open Interface with code developed by our project
group.

We used the Adafruit CC3000 WiFi shield as our 802.11
signal intensity sensor. The wifi shield was interfaced to the
mbed using the SPI interface and the mbed cc3000 library
developed initially by cc3000 chip manufacturer Texas Instru-
ments and ported to the mbed platform by Martin Kojtal. In
addition, we used a SparkFun BlueSMiRF Bluetooth modem
to interface the robot with a Bluetooth-enabled laptop in order
to send robot position coordinates and signal intensity readings
to the laptop. This modem was interfaced to the KL25Z board
using a serial port, using the Serial framework.

To help determine the robot’s position, we used an ul-
trasound sensor to measure distance and a magnetometer to
measure angular orientation. The ultrasound sensor was a
Maxbotix LV-EZ1, put on a breakout board by Adafruit. This
sensor was interfaced to the KL25Z using an analog connection
(to conserve the KL25Z’s limited number of serial ports).
Data was read off of the LV-EZ1 using the KL25Z’s onboard
analog-to-digital converter (ADC) using the mbed AnalogIn
library. Our magnetometer was a Honeywell HMC5883L 3-
axis digital compass, put on a breakout board by SparkFun.
The magnetometer was electrically interfaced to the KL25Z
using an I2C connection, and was interfaced through software
using code originally authored by Tyler Weaver, and modified
by the project group to support sensor calibration.

A photograph of our hardware is provided in Figure 1, and
a block diagram illustrating our hardware setup is provided in
Figure 2.

https://github.com/wueric/WifiRobot
https://github.com/wueric/WifiRobot
http://youtu.be/C_c6Be1Nw74


2

mbed% Logic%%
converter%

cc3000%

iRobot%

BlueSMIRF%

MaxBo;x%%
LV=EZ1%

HMC5883L%

Fig. 2. Block diagram for our hardware setup.

IV. CHARACTERIZING AND MODELING SENSORS

e had a variety of sensors to choose from to aid us in
localization. Our requirements were to be able to solve the
localization problem on a grid up to 10 meters per side to
within +/- 1

3 m. To do this, we needed to be able to move
forward one unit of distance at a time, and turn as close
to 90 degrees as possible at the edges of the grid. For the
forward motion, we considered the onboard accelerometer, an
ultrasound module.

A. Accelerometer
To determine the accuracy of the accelerometer module,

we laid it flat at rest on a table and read the measured
acceleration values at one second intervals. In addition to this,
we added integration code to measure the distance traveled by
the robot in each direction. Initially, it measured about 2-3 m

s2

on each axis. We realized that most of the error was systematic
error, which could be removed. As a basic first step, we took
the average of the first ten readings from the accelerometer,
and subtracted this value from subsequent readings. After
adjusting for bias, the readings were surprisingly accurate,
usually within 0.1 m

s2 on each axis. Unfortunately, even this
small error quickly compounded. Within five readings, the
integrated position was already about 0.3 m off on each axis,
or about a foot in each direction. This level of inaccuracy
was unacceptable for us. Although there are more advanced
filtering techniques which could have gotten us better results,
we realized that the accelerometer was unlikely to work for us.
This is because the iRobot moves at a relatively slow velocity,
and all of the acceleration is done in very short bursts. In
order for an accelerometer to work in such conditions, the
sampling rate must be very high during acceleration. Combined
with heavy filtering code, the accelerometer would consume a
significant portion of the processor’s clock cycles, which could
potentially conflict with other sensor readings and controlling
the robot. Furthermore, since using dead reckoning requires
that the accelerometer be continuously sampled, using it would
introduce substantial concurrency issues in our software. For

60 80 100 120 140 160 180 200 220 240 260
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

True distance (cm)

16
 b

it 
se

ns
or

 re
ad

in
g

Student Version of MATLAB

Fig. 3. Plot showing 16-bit ADC values for the LV-EZ1 ultrasound
rangefinder plotted against the true distance of an object placed in front of
it. The plot is very linear, which suggests that the sensor response can be
modeled with the affine model.

these reasons, we decided to perform localization using other
sensors.

B. Ultrasound Rangefinder
In order to accurately measure distance travelled using the

Maxbotix LV-EZ1 ultrasound sensor, we first had to model and
calibrate the sensor. This was done by connecting the analog
output of the LV-EZ1 (where VCC for the sensor was set to the
recommended 3.3 V) to the KL25Z’s onboard 16-bit analog-
to-digital converter (ADC). We took data points by placing a
large flat surface at 60 cm increments in front of the sensor
and reading off the value returned by the ADC. The results of
these measurements are plotted in Figure 3.

Because the sensor response was approximately linear with
distance, we modeled the response of the analog output of
the LV-EZ1 coupled ADC using the affine model of a sensor.
Briefly, the output of the sensor is modeled as

f(x(t)) = a · x+ b

where f is the output of the sensor, and x is the true
distance. Using MATLAB, we were able to calculate best-fit
values for parameters a and b. According to these calculations,
a was 50.18 bits

cm and b was -292 cm. The affine model was
then implemented in software using these values to accurately
determine distance travelled.

C. Magnetometer
In order meaningfully read orientation from the HMC5883L

magnetometer, the magnetometer had to be calibrated to offset
hard-iron effects and soft-iron effects. Hard-iron effects corre-
spond to magnetic fields that generate a generate a consistent,
constant offset to the magnetometer readings. They correspond
to permanent sources of magnetic fields (in our case, the mag-
nets and coils for the iRobot’s motors contributed significantly



3

200 300 400 500 600 700 800

−600

−550

−500

−450

−400

−350

−300

−250

−200

−150

−100

Best fit: R = 280.6; Ctr = (498.0,−366.0)

Student Version of MATLAB

Fig. 4. Plot showing the x and y (labeled as z) components of the magnetic
field as the sensor is rotated, and the best-fit circle for the data. The shift
in the center of the circle nature suggests that there are significant hard-iron
effects on the magnetometer, while the circular shape of the data indicates
that soft-iron effects are minimal.

to the hard-iron magnetic fields). Soft-iron effects correspond
to magnetic field distortions caused by nearby metallic objects
(i.e. screws on the iRobot case).

We characterized the hard-iron and soft-iron effects on the
magnetometer by placing the magnetometer on the iRobot and
spinning the iRobot in place. While the iRobot spun, we re-
peatedly measured the magnetic fields in the x and y directions
(relative to the robot’s orientation) using an accelerometer. A
scatterplot of these readings is plotted in Figure 4. In the ideal,
no distortion case, the scatterplot should trace out a perfect
circle with the center at the origin. Hard-iron effects will show
up as a shift in the center of the circle in the plot, and soft-
iron effects will show up as a distortion to the shape of the
circle (i.e. making it more elliptical). Using the gathered data,
we used MATLAB to find the best-fit circle and determine
the constant bias terms corresponding to hard-iron effects.
Furthermore, since the data points on the scatterplot form a
nearly perfect circle, we assumed that the soft-iron effects on
the magnetometer were negligible. We then implemented the
offset in software to compensate for hard-iron effects.

V. AUGMENTING SENSOR READINGS WITH WHEEL
SPEED

After calibration, our sensors worked well most of the time.
However, we noticed that in certain situations, their readings
would be off by an unacceptable margin. In these situations, it
was very hard to guarantee worst case behaviour. For example,
the ultrasound module was only accurate in a range of 2 - 10
feet, so when a wall was not present within that range, distance
readings were very unpredictable. With the magnetometer,
disturbances would occasionally cause angle measurements to
become wildly inaccurate, sometimes causing the robot to spin
endlessly in place. In order to combat this, we used the iRobots
wheel speed measurements to bound the time taken for any
action.

In order to do this, we first needed to experimentally deter-
mine the accuracy of the iRobots wheel speed measurements.
The wheel speeds are given in mm

s , with a range or 0 -
250 mm

s . We found that the actual speed of the robot was
consistently higher than what the speed was set to. However,
actual wheel speed varied approximately linearly with the
measurement, and we were able to find a speed and amount
of time in which the robot would go very close to one foot.
We used this to set a small window of time during which
the robot was guaranteed to be close to a foot from its starting
position. If the ultrasound module failed to measure a one foot
distance within that time frame, then the ultrasound reading
was discarded and the robot stopped at the end of the window.

Rotation was handled similarly. Because the robot always
turns in place, we knew the wheels would move on a circle
with diameter equal to the robots wheelbase. Using this, we
were able to calculate the distance the wheels needed to travel
for the robot to turn 90 degrees. We set a window of time
for the magnetometer, and relied on it to prevent excessive
rotation. Using these bounds, the robot was able to consistently
sweep out a grid and return to any location within the grid with
relatively small error.

VI. SIMULATING EFFECTS OF SENSOR ERROR ON ROBOT
MOVEMENT

A. Modeling Assumptions
In order to model the behavior of the iRobot Create, we

developed a Python simulation to simulate both the movement
of the iRobot, and the effects that errors in localization and
movement could have on the final path taken by the iRobot.
Our model made several critical assumptions, namely that the
robot accelerates instantaneously, travels on a level surface,
and suffers from no wheel slippage. Noisy simulated sensor
data was generated from the predicted ideal sensor data, and
several parameters regarding error were tested.

B. Effects of Varying Angle Tolerance on Path
Because our sensors took a significant amount of time to

update and because our software was unable to constantly
monitor sensor values, our finite state machine allowed for
transitions between the turning and driving forward states when
the difference between the desired angle and the measured
angle was within a certain tolerance. In order to determine the
effect that threshold angles had on the robot’s traversal of the
grid path, we simulated the robot’s behavior for different turn
threshold angle values. The simulated paths are given below
in Figure 5. From the plot, it is clear that increasing angle
tolerance causes increasing errors in the angle turned by the
robot, and thus increasing errors in the path taken by the robot.
This simulation emphasizes the importance of writing software
that reads sensor values as often as possible, as the inability
to do so leads to compounding errors in position.

C. Effects of Magnetometer Calibration Error on Path
In addition, we modeled the effects of errors in magne-

tometer calibration error on the path taken by the robot. This



4

400 600 800 1000 1200 1400 1600
400

600

800

1000

1200

1400

1600

1800

 

 
0.001 radians tolerance
0.01 radians tolerance
0.02 radians tolerance
0.03 radians tolerance

Student Version of MATLAB

Fig. 5. Plot showing the simulated path taken by the robot for different
amounts of turn angle tolerance. Tolerance is given in radians. While increas-
ing the tolerance leads to increasing error, the error is relatively insignificant
to other sources of angular orientation error.

simulation determined how the angle turned by the robot,
and thus the grid path of the robot would be altered if
hard-iron effects on the magnetometer were not adequately
compensated for. We added a constant bias to simulated
magnetometer readings, and determined the path that the robot
would follow if given these erroneous readings. The paths for
various amounts of hard-iron calibration error are given in
Figure 6. These simulations demonstrate that even seemingly
insignificant errors from the magnetometer (on the order of a
few percent) could have substantial impact on the angle turned
by the robot and thus on the path taken by the robot. They also
suggest that very accurate measurement and control of angular
orientation is required to maintain a rectangular path, and
further demonstrates the need to augment the magnetometer
with some other information to accurately sense orientation.

The hourglass-shaped paths generated by the simulations
matched quite closely with paths taken by the actual robot in
testing, suggesting that measurement errors with the magne-
tometer play a substantial role in the real-world deviation of
the robot from its ideal path.

VII. RESULTS

Using the search and maximize algorithm described above,
and the sensor-plus-wheelspeed localization system, we were
able to construct spatial maps of RSSI signal intensity for parts
of Cory Hall. In Figure 7, we illustrate a 3D heatmap of RSSI
intensity for a 12 foot by 12 foot square outside of the EECS
149 lab. The location of the router corresponds to the back
corner of the plot.

VIII. CONCLUSION

We have designed, developed, and constructed a robot that
searches a given space for the position of strongest 802.11
RSSI signal intensity. Using our grid search algorithm, the
robot searches the space for the point of strongest signal, and

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

 

 
0.05 radius lengths error
0.10 radius lengths error
0.25 radius lengths error

Student Version of MATLAB

Fig. 6. Plot showing the simulated path taken by the robot for different
amounts of magnetometer hard-iron calibration error. The key is given in
radius lengths, which correspond to the amount of shifting of the center of
the circle traced out by the simulated magnetometer readings. As calibration
error increases, the error in the path increases dramatically, suggesting that
accurate magnetometer readings are absolutely critical.

1

2

3

4

5 1

2

3

4

5

80

85

90

95

100

105

110

Student Version of MATLAB

Fig. 7. A heatmap showing sample RSSI readings for a corner of Cory Hall.
The location of the router corresponds to the far corner in the plot.

returns to the point with the strongest signal. In addition, we
have modeled the responses and sensitivities of the various
sensors used to help localize and control the robot, and have
simulated the effects that sensor error and imprecise control
can have on the path that the robot has followed.

IX. CITATIONS

1) Thomas, Teyvonia. “Vision-based Obstacle Detection
and Path Planning for the IRobot Create Using an
Android-powered Smartphone.” Vision-based Obstacle
Detection and Path Planning for the IRobot Create
Using an Android-powered Smartphone. University of
Pennsylvania, 18 May 2011. Web. 19 Dec. 2014.

2) “Hard-Iron and Soft-Iron Calibration PTM by Digi-Key
and Honeywell.” Hard-Iron and Soft-Iron Calibration



5

PTM by Digi-Key and Honeywell. Digikey, 2014. Web.
19 Dec. 2014.

3) Edward A. Lee and Sanjit A. Seshia, Introduction to
Embedded Systems, A Cyber-Physical Systems Ap-
proach, Edition 1.5, http://LeeSeshia.org, ISBN 978-0-
557-70857-4, 2014.

4) Weaver, Tyler. “HMC5883L”. HMC5883L - a Mercu-
rial Repository - mbed. mbed, 2014. Web. 19 Dec. 2014.

5) Kojtal, Martin. “cc3000 hostdriver mbedsocket.”
Cc3000 hostdriver mbedsocket - a Mercurial
Repository — mbed. mbed, 2014. Web. 19 Dec.
2014.

6) iRobot. “iRobot Create Open Interface.” (n.d.): n. pag.
IRobot. IRobot, 2014. Web. 19 Dec. 2014.

7) “Mbed in a Nutshell.” Interactive Device Design Fall
2014. UC Berkeley, 19 Sept. 2014. Web. 19 Dec. 2014.

8) “Wireless 1.” Interactive Device Design Fall 2014. UC
Berkeley, 20 Oct. 2014. Web. 19 Dec. 2014.


	Introduction
	Maximal Signal Strength Algorithms
	Hardware and Firmware
	Characterizing and Modeling Sensors
	Accelerometer
	Ultrasound Rangefinder
	Magnetometer

	Augmenting Sensor Readings with Wheel Speed
	Simulating Effects of Sensor Error on Robot Movement
	Modeling Assumptions
	Effects of Varying Angle Tolerance on Path
	Effects of Magnetometer Calibration Error on Path

	Results
	Conclusion
	Citations

