
1

Introduction to
Embedded Systems

Chapter 14: Comparing State Machines

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights
reserved.

EECS 149/249A, UC Berkeley: 2

Component Substitution

Can we replace one
component in a system by
another and be assured that it
will continue to work correctly?

What if we replace the
Cortex-A9 core by
a Cortex-A12?

2

myRIO 1950/1900

2

EECS 149/249A, UC Berkeley: 3

Comparing State Machines

Why compare state machines?

 Check conformance with a specification.

 Optimize a model by reducing complexity.

 Check if component substitution is OK.

 …

How can we compare two state machines

 Equivalence: Do they ‘do the same thing’?

 Refinement: Does one do ‘more’ than the other?
 e.g., exhibit different behaviors? Produce different outputs?

EECS 149/249A, UC Berkeley: 4

FSM Controller for iRobot

Assume a time-triggered FSM.
• If the level input is present, then it

drives forward for a fixed amount of
time by issuing a drive command.

• If the level input is absent, then it
rotates for a fixed amount of time.

3

EECS 149/249A, UC Berkeley: 5

FSM Controller for iRobot

Assume a time-triggered FSM.
• If the level input is present, then it

drives forward for a fixed amount of
time by issuing a drive command.

• If the level input is absent, then it
rotates for a fixed amount of time.

Alternative FSM.

Is machine M2 equivalent to M1?
In what sense?

M2

M1

EECS 149/249A, UC Berkeley: 6

Equivalence: Part 1: Type Equivalence

Notice that the actor models for these
machines have the same input ports
and the same output ports.

Moreover, the ports have the same
types.

Therefore M2 is type equivalent to M1.

M2

M1

4

EECS 149/249A, UC Berkeley: 7

Equivalence: Part 2: Language Equivalence

Notice that for every input sequence,
the two machines produce the same
output sequence.

Therefore M2 is language equivalent
to M1.

M2

M1

EECS 149/249A, UC Berkeley: 8

Equivalence: Part 3: Bisimulation

This one is very subtle:
Notice that for every state of M1 there
is a corresponding state of M2 that will
react to inputs in exactly the same way
and will then transition to another
similarly corresponding state.

Therefore M2 is bisimilar to M1.

M2

M1

corresponding

For deterministic machines, language
equivalence and bisimilarity are the
same. For nondeterministic machines
they are not.

We will come back to this!
But first, refinement.

5

EECS 149/249A, UC Berkeley: 9

Equivalence vs. Refinement

Two state machines M1 and M2 that are not equivalent may nonetheless be
related:

•M2 may be type compatible with M1 in that it can replace M1 without
causing a type conflict. (type refinement)
•M2 may be a specialization of M1 in that it can produce only output
sequences that M1 can produce, given the same input sequences.
(language containment)
•M2 may be a specialization of M1 in that at every reaction M2 can produce
only output values that M1 can produce. (M1 simulates M2) (simulation)

In all cases, if M1 is “valid” in a system, then so is M2, where only the
meaning of “valid” varies.
•M2 is a type/language/simulation refinement of M1.
•M2 implements M1 (here, M1 is taken to be a specification).

EECS 149/249A, UC Berkeley: 10

Refinement: Part 1: Type Refinement

M2 is a type refinement of M1 if:

M2

M1

x: Vx

w: Vw

y: Vy

x: V'x

z: V'z

y: V'y

P1 = { x, w }

P2 = { x }

Q1 = { y }

Q2 = { y, z }

M2 can replace M1 without
causing a type conflict.

6

EECS 149/249A, UC Berkeley: 11

Recall the Garage Counter

EECS 149/249A, UC Berkeley: 12

Example of Type Refinement

Consider a garage counter M1 with M = 99 spaces.

Suppose another garage counter M2 has M = 90 spaces.

M2 is a type refinement of M1 .

Why might this matter?

Is it always OK to replace M1 with M2?

7

EECS 149/249A, UC Berkeley: 13

When is Replacement OK?

The counter machine above can be replaced by the
“equivalent” machine below:

EECS 149/249A, UC Berkeley: 14

When is Replacement OK?

The two machines are
again “equivalent.” How
to define equivalence? Is
equivalence always
required?

M2

M1

For deterministic
machines:

language refinement.

For nondeterministic
machines:

simulation

8

EECS 149/249A, UC Berkeley: 15

EECS 149/249A, UC Berkeley: 16

Behavior (Execution Trace) of a State Machine

For language refinement, traces will comprise only of inputs and outputs, not of states.

9

EECS 149/249A, UC Berkeley: 18

Language Refinement M1

x: Vx y: Vy

M2

x: Vx y: Vy

M2 can replace M1 if
its observable (I/O)
behavior is a subset
of that of M1.L(M2)

L(M1)

EECS 149/249A, UC Berkeley: 19

Language Equivalence is not Enough in General

Note that these two machines are language equivalent.

Yet….

10

EECS 149/249A, UC Berkeley: 20

Language Equivalence is not Enough in General

However, even though these machines have exactly the
same input/output behaviors, there is a context in which
M1 is not a valid replacement for M2 .

EECS 149/249A, UC Berkeley: 21

Language Equivalence is not Enough in General

Suppose M1 is the specification (everything it does is OK).

It is fine to replace it with M2 because at each step, any move
M2 can make is OK (because any move M1 can make is OK).

11

EECS 149/249A, UC Berkeley: 22

Language Equivalence is not Enough in General

Conversely,

Suppose M2 is the specification (everything it does is OK).

It is not OK to replace it with M1 because in state b, M1 is
always capable of making a move that M2 cannot make (think
of a malicious M1 that watches M2).

EECS 149/249A, UC Berkeley: 23

Simulation Relation: The Matching Game

M1 simulates M2.

12

EECS 149/249A, UC Berkeley: 24

Simulation Relation: The Matching Game

M1 simulates M2.

Game: each machine starts in its initial state.

M2 moves first

EECS 149/249A, UC Berkeley: 25

Simulation Relation: The Matching Game

M1 simulates M2.

Game: M2 moves first, and then M1 matches the move.

first possibility

M2 moves first

13

EECS 149/249A, UC Berkeley: 26

Simulation Relation: The Matching Game

M1 simulates M2.

Game: “matching” the move: same input, same output.

second possibility

M2 moves first

EECS 149/249A, UC Berkeley: 27

Simulation Relation: The Matching Game

M1 simulates M2.

Game: Get to all reachable states of M2.

the simulation relation

M2 moves first

14

EECS 149/249A, UC Berkeley: 28

Simulation Relation: The Matching Game

Since M1 simulates M2, M2 refines M1, M2 can replace M1,
everywhere M1 is OK, so is M2.

EECS 149/249A, UC Berkeley: 29

Formal definition of Simulation

15

EECS 149/249A, UC Berkeley: 30

Formal definition of Simulation

EECS 149/249A, UC Berkeley: 31

Bisimulation

A still stronger form of equivalence is called bisimulation.

M1 is bisimilar to M2 if they are type equivalent and, when
playing the game, on each move, either machine can
move first, and the other machine can match its move.

16

EECS 149/249A, UC Berkeley: 32

Bisimulation

It is possible to have two machines that simulate each
other that are not bisimilar.

M1 simulates M2 and
vice versa, but they
are not bisimilar.

EECS 149/249A, UC Berkeley: 33

Bisimulation, Formally

17

EECS 149/249A, UC Berkeley: 34

Simulation and Trace Containment

EECS 149/249A, UC Berkeley: 35

Summary

• M2 is a type refinement of M1:
M2 can replace M1 without causing a type conflict.

• M2 is a language refinement of M1:
M2 can produce only output sequences that M1 can produce, given the
same input sequences.

• M2 is a simulation refinement of M1:
(equivalently, M1 simulates M2)
At every reaction, M2 can produce only outputs that M1 can produce.

• M2 is bisimilar to M1:
At every either machine can produce only outputs that the other can
produce.

In all cases, if M1 is “valid” in a system, then so is M2, where only the
meaning of “valid” varies. Alternative terminology:

• M2 implements M1 (here, M1 is taken to be a specification).

