
1

Introduction to
Embedded Systems

Chapter 3: Discrete Dynamics, State Machines

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights
reserved.

EECS 149/249A, UC Berkeley: 2

Discrete Systems

Discrete = “individually separate / distinct”

A discrete system is one that operates in a sequence of
discrete steps or has signals taking discrete values.

It is said to have discrete dynamics.

2

EECS 149/249A, UC Berkeley: 3

Concepts covered in Today’s Lecture

Models = Programs

Actor Models of Discrete Systems: Types and Interfaces

States, Transitions, Guards

Determinism and Receptiveness

EECS 149/249A, UC Berkeley: 4

Discrete Systems: Example Design Problem

Count the number of cars that are present in a
parking garage by sensing cars enter and leave the
garage. Show this count on a display.

3

EECS 149/249A, UC Berkeley: 5

Discrete Systems

Example: count the number of cars in a parking garage
by sensing those that enter and leave:

EECS 149/249A, UC Berkeley: 6

Discrete Systems

Example: count the number of cars that enter and leave a
parking garage:

Pure signal:

4

EECS 149/249A, UC Berkeley: 7

Discrete Systems

Example: count the number of cars that enter and leave a
parking garage:

Pure signal:

Discrete actor:

EECS 149/249A, UC Berkeley: 8

Demonstration of Ptolemy II Model (“Program”)

5

EECS 149/249A, UC Berkeley: 9

Other Actor Models with different interface?

EECS 149/249A, UC Berkeley: 10

Reaction / Transition

State: condition of the system at a particular point in time
• Encodes everything about the past that influences the system’s

reaction to current input

6

EECS 149/249A, UC Berkeley: 11

Inputs and Outputs at a Reaction

EECS 149/249A, UC Berkeley: 12

State Space

7

EECS 149/249A, UC Berkeley: 13

Question

What are some scenarios that the given parking garage
(interface) design does not handle well?

EECS 149/249A, UC Berkeley: 14

Garage Counter Finite State Machine (FSM)
in Pictures

8

EECS 149/249A, UC Berkeley: 15

Garage Counter Finite State Machine (FSM)
in Pictures

Initial state

EECS 149/249A, UC Berkeley: 16

Garage Counter Finite State Machine (FSM)
in Pictures

Output

9

EECS 149/249A, UC Berkeley: 17

Garage Counter Mathematical Model

The picture
above defines
the update
function.

EECS 149/249A, UC Berkeley: 19

FSM Notation

transition

self loop

state

initial state

10

EECS 149/249A, UC Berkeley: 20

Examples of Guards for Pure Signals

EECS 149/249A, UC Berkeley: 21

Examples of Guards for Signals with Numerical
Values

11

EECS 149/249A, UC Berkeley: 22

Example of Modal Model: Thermostat

EECS 149/249A, UC Berkeley: 23

When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs
when any input is present. Then the above transition will
be taken whenever the current state is s1 and x is present.

This is an event-triggered model.

12

EECS 149/249A, UC Berkeley: 24

When does a reaction occur?

Suppose x and y are discrete and pure signals.
When does the transition occur?

Answer: when the environment triggers a reaction and x is absent.
If this is a (complete) event-triggered model, then the transition will
never be taken because the reaction will only occur when x is
present!

EECS 149/249A, UC Berkeley: 25

When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs on
the tick of an external clock.

This is a time-triggered model.

13

EECS 149/249A, UC Berkeley: 26

More Notation: Default Transitions

A default transition is enabled if no non-default transition
is enabled and it either has no guard or the guard
evaluates to true. When is the above default transition
enabled?

EECS 149/249A, UC Berkeley: 27

Only show default transitions if they are guarded
or produce outputs (or go to other states)
Example: Traffic Light Controller

14

EECS 149/249A, UC Berkeley: 29

Some Definitions

• Stuttering transition: (possibly implicit) default
transition that is enabled when inputs are absent, that
does not change state, and that produces absent
outputs.

• Receptiveness: For any input values, some transition
is enabled. Our structure together with the implicit
default transition ensures that our FSMs are receptive.

• Determinism: In every state, for all input values,
exactly one (possibly implicit) transition is enabled.

EECS 149/249A, UC Berkeley: 30

Test Your Understanding: Three Kinds of
Transitions

Self-Loop

Default Transition

Stuttering Transition

1. Is a default transition always a self-loop?

2. Is a stuttering transition always a self-loop?

3. Is a self-loop always stuttering?

15

EECS 149/249A, UC Berkeley: 31

Example: Nondeterministic FSM

Model of the environment for a traffic light, abstracted
using nondeterminism:

Formally, the update function is replaced by a function

EECS 149/249A, UC Berkeley: 32

16

EECS 149/249A, UC Berkeley: 33

Uses of Nondeterminism

1. Modeling unknown aspects of the environment or
system
 Such as: how the environment changes a robot’s

orientation

2. Hiding detail in a specification of the system
 We will see an example of this later (see the text)

Any other reasons why nondeterministic FSMs might be
preferred over deterministic FSMs?

EECS 149/249A, UC Berkeley: 35

Size Matters

Non-deterministic FSMs are more compact than
deterministic FSMs

 A classic result in automata theory shows that a
nondeterministic FSM has a related deterministic FSM
that is equivalent in a technical sense (language
equivalence, covered in Chapter 13, for FSMs with
finite-length executions).

 But the deterministic machine has, in the worst case,
many more states (exponential in the number of states
of the nondeterministic machine, see Appendix B).

17

EECS 149/249A, UC Berkeley: 36

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

 A deterministic system exhibits a single behavior

 A non-deterministic system exhibits a set of behaviors
 visualized as a computation tree

. . .

. . .

. . .

. . .

. . .

Deterministic FSM behavior:

Non-deterministic FSM behavior:

EECS 149/249A, UC Berkeley: 37

Non-deterministic Probabilistic (Stochastic)

In a probabilistic FSM, each transition has an associated
probability with which it is taken.

In a non-deterministic FSM, no such probability is known.
We just know that any of the enabled transitions from a
state can be taken.

18

EECS 149/249A, UC Berkeley: 38

Review: Concepts covered

Models = Programs

Actor Models of Discrete Systems: Types and Interfaces

States, Transitions, Guards

Determinism, Receptiveness, etc.

