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Discrete Systems

Discrete = “individually separate / distinct”

A discrete system is one that operates in a sequence of 
discrete steps or has signals taking discrete values.

It is said to have discrete dynamics.
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Concepts covered in Today’s Lecture

Models = Programs

Actor Models of Discrete Systems: Types and Interfaces

States, Transitions, Guards

Determinism and Receptiveness
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Discrete Systems: Example Design Problem

Count the number of cars that are present in a 
parking garage by sensing cars enter and leave the 
garage. Show this count on a display.
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Discrete Systems

Example: count the number of cars in a parking garage 
by sensing those that enter and leave:
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Discrete Systems

Example: count the number of cars that enter and leave a 
parking garage:

Pure signal:
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Discrete Systems

Example: count the number of cars that enter and leave a 
parking garage:

Pure signal:

Discrete actor:
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Demonstration of Ptolemy II Model (“Program”)



5

EECS 149/249A, UC Berkeley: 9

Other Actor Models with different interface?
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Reaction / Transition

State: condition of the system at a particular point in time
• Encodes everything about the past that influences the system’s 

reaction to current input
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Inputs and Outputs at a Reaction
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State Space
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Question

What are some scenarios that the given parking garage 
(interface) design does not handle well?
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Garage Counter Finite State Machine (FSM) 
in Pictures
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Garage Counter Finite State Machine (FSM) 
in Pictures

Initial state

EECS 149/249A, UC Berkeley: 16

Garage Counter Finite State Machine (FSM) 
in Pictures

Output
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Garage Counter Mathematical Model

The picture 
above defines 
the update 
function.
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FSM Notation

transition

self loop

state

initial state
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Examples of Guards for Pure Signals
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Examples of Guards for Signals with Numerical 
Values
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Example of Modal Model: Thermostat
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When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs 
when any input is present. Then the above transition will 
be taken whenever the current state is s1 and x is present.

This is an event-triggered model.
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When does a reaction occur?

Suppose x and y are discrete and pure signals. 
When does the transition occur? 

Answer: when the environment triggers a reaction and x is absent.
If this is a (complete) event-triggered model, then the transition will 
never be taken because the reaction will only occur when x is 
present!
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When does a reaction occur?

Suppose all inputs are discrete and a reaction occurs on 
the tick of an external clock. 

This is a time-triggered model.
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More Notation: Default Transitions

A default transition is enabled if no non-default transition 
is enabled and it either has no guard or the guard 
evaluates to true. When is the above default transition 
enabled? 
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Only show default transitions if they are guarded 
or produce outputs (or go to other states)
Example: Traffic Light Controller
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Some Definitions

• Stuttering transition: (possibly implicit) default 
transition that is enabled when inputs are absent, that 
does not change state, and that produces absent 
outputs.

• Receptiveness: For any input values, some transition 
is enabled. Our structure together with the implicit 
default transition ensures that our FSMs are receptive.

• Determinism: In every state, for all input values, 
exactly one (possibly implicit) transition is enabled.
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Test Your Understanding: Three Kinds of 
Transitions

Self-Loop

Default Transition

Stuttering Transition

1. Is a default transition always a self-loop?

2. Is a stuttering transition always a self-loop?

3. Is a self-loop always stuttering?
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Example: Nondeterministic FSM

Model of the environment for a traffic light, abstracted 
using nondeterminism:

Formally, the update function is replaced by a function
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Uses of Nondeterminism

1. Modeling unknown aspects of the environment or 
system
 Such as: how the environment changes a robot’s 

orientation

2. Hiding detail in a specification of the system
 We will see an example of this later (see the text)

Any other reasons why nondeterministic FSMs might be 
preferred over deterministic FSMs?
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Size Matters

Non-deterministic FSMs are more compact than 
deterministic FSMs

 A classic result in automata theory shows that a 
nondeterministic FSM has a related deterministic FSM 
that is equivalent in a technical sense (language 
equivalence, covered in Chapter 13, for FSMs with 
finite-length executions).

 But the deterministic machine has, in the worst case, 
many more states (exponential in the number of states 
of the nondeterministic machine, see Appendix B).
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Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

 A deterministic system exhibits a single behavior

 A non-deterministic system exhibits a set of behaviors
 visualized as a computation tree

. . .

. . .

. . .

. . .

. . .

Deterministic FSM behavior:

Non-deterministic FSM behavior:
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Non-deterministic  Probabilistic (Stochastic)

In a probabilistic FSM, each transition has an associated 
probability with which it is taken.

In a non-deterministic FSM, no such probability is known. 
We just know that any of the enabled transitions from a 
state can be taken.
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Review: Concepts covered

Models = Programs

Actor Models of Discrete Systems: Types and Interfaces

States, Transitions, Guards

Determinism, Receptiveness, etc.


