
1

Introduction to
Embedded Systems

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights 
reserved.

Chapter 16: Quantitative (Execution Time) Analysis

Quantitative Analysis, UC Berkeley: 2

Quantitative Analysis / Verification

Does the brake-by-wire software 
always actuate the brakes within 1 ms?
Safety-critical embedded systems

Can this new app drain my 
iPhone battery in an hour?
Consumer devices

How much energy must the sensor node 
harvest for RSA encryption?
Energy-limited sensor nets,              
bio-medical apps, etc.



2

Quantitative Analysis, UC Berkeley: 3Courtesy of Kuka Robotics Corp.

Quantitative Analysis, UC Berkeley: 4

Time is Central to Cyber-Physical Systems

Several timing analysis problems:

• Worst-case execution time (WCET) estimation

• Estimating distribution of execution times

• Threshold property: can you produce a test case that 
causes a program to violate its deadline?

• Software-in-the-loop simulation: predict execution time 
of particular program path

Various forms of the same basic problem.



3

Quantitative Analysis, UC Berkeley: 5

Worst-Case Execution Time (WCET) of a Task

The longest time taken by a software task to execute

 Function of input data and environment conditions

BCET = Best-Case Execution Time

(shortest time taken by the task to execute)

Consider this code:  *x = 10;  

on ARM Cortex-A9 MPCore dual core processor.

What’s the WCET? BCET?

Quantitative Analysis, UC Berkeley: 6

Worst-Case Execution Time (WCET) & BCET

Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.



4

Quantitative Analysis, UC Berkeley: 7

References

Material in this lecture is drawn from the following sources:

 Chapter 16 of Lee and Seshia. See http://leeseshia.org

 “The Worst-Case Execution Time Problem – Overview of 
Methods and Survey of Tools”, R. Wilhelm et al., ACM 
Transactions on Embedded Computing Systems, 2007. 

 Chapter 9 of “Computer Systems: A Programmer's 
Perspective”, R. E. Bryant and D. R. O’Hallaron, Prentice-
Hall, 2002.

 “Performance Analysis of Real-Time Embedded Software,” 
Y-T. Li and S. Malik, Kluwer Academic Pub., 1999.

 “Game-Theoretic Timing Analysis”, S. A. Seshia and A. 
Rakhlin, ICCAD 2008
• Extended journal version is “Quantitative Analysis of Systems 

Using Game-Theoretic Learning”, ACM TECS, 2012.

Quantitative Analysis, UC Berkeley: 8

The WCET Problem

Given 

 the code for a software task 

 the platform (OS + hardware) that it will run on 

Determine the WCET of the task.

Why is this important? Where is the WCET used?

Can the WCET always be found?

The WCET is central to the design of Embedded Systems:

Needed for Correctness (does the task finish in time?) and

Performance (find optimal schedule for tasks)

In general, no, because the problem is undecidable.



5

Quantitative Analysis, UC Berkeley: 9

Typical WCET Problem

Task executes within an infinite loop

while(1) {

read_sensors();

compute();              

write_to_actuators();

}

This code typically has:

 loops with finite bounds 

 no recursion

Additional assumptions:

 runs uninterrupted

 single-threaded

EECS 249, UC Berkeley: 10

Outline of the Lecture

 Programs as Graphs

 Challenges of Execution Time Analysis

 Current Approaches

 Limitations and Future Directions

Optional reading assignment: extra slides on measuring execution 
time using CPU cycle counter



6

EECS 249, UC Berkeley: 11

Example Program: Modular Exponentiation

result = 1;
i = EXP_BITS;

(i > 0)?

((exponent & 1) == 1)?

result = (result * base) % mod;

exponent >>= 1;
base = (base * base) % mod;
i--;

return result;

1

0

1

0

1

2

3

4

5

6

Each node is a 
basic block

Control-Flow 
Graph



7

Quantitative Analysis, UC Berkeley: 13

Components of Execution Time Analysis 
(traditional approaches)

 Program path (Control flow) analysis
Want to find longest path through the program 

 Find loop bounds 

 Identify feasible paths through the program 

 Identify dependencies amongst different code fragments

 Processor behavior analysis
 For small code fragments (basic blocks), generate 

bounds on run-times on the platform

Model details of architecture, including cache behavior, 
pipeline stalls, branch prediction, etc.

 Outputs of both analyses feed into each other

Quantitative Analysis, UC Berkeley: 14

Program Path Analysis: Path Explosion

for (Outer = 0; Outer < MAXSIZE; Outer++) {
/* MAXSIZE = 100 */

for (Inner = 0; Inner < MAXSIZE; Inner++) {
if (Array[Outer][Inner] >= 0) {

Ptotal += Array[Outer][Inner];
Pcnt++;

} else {
Ntotal += Array[Outer][Inner];
Ncnt++;

}
}
Postotal = Ptotal;
Poscnt = Pcnt;
Negtotal = Ntotal;
Negcnt = Ncnt;

}
Example cnt.c from WCET benchmarks, Mälardalen Univ.

How many paths?

210000



8

Quantitative Analysis, UC Berkeley: 15

Program Path Analysis: Determining Loop Bounds

How many times around 
the while loop?

32

Quantitative Analysis, UC Berkeley: 16

Common Current Approach (high-level)

1. Manually construct processor behavior model

2. Use model to find “worst-case” starting processor 
states for each basic block  measure execution 
times of the blocks from these states

3. Use these times as upper bounds on the time of each 
basic block

4. Formulate an integer linear program to find the 
maximum sum of these bounds along any program 
path 



9

Quantitative Analysis, UC Berkeley: 17

Example

N = 10;

q = 0;

while(q < N)

q++;

q = r;

B1:

N = 10;

q = 0;

B2:

while(q<N)

B4:

q = r;

B3:

q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi  # times Bi is executed

dj  # times edge is executed

Example due to Y.T. Li and S. Malik

Quantitative Analysis, UC Berkeley: 18

Example
B1:

N = 10;

q = 0;

B2:

while(q<N)

B4:

q = r;

B3:

q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi  # times Bi is executed

dj  # times edge is executed

Ci  measured upper bound on 
time taken by Bi

Want to

maximize  i Ci xi

subject to constraints

x1 = d1 = d2

d1 = 1

x2 = d2+d4 = d3+d5

x3 = d3 = d4 = 10

x4 = d5 = d6

Example due to Y.T. Li and S. Malik



10

Quantitative Analysis, UC Berkeley: 19

Integer Linear Programming

xi  # times Bi is executed

dj  # times edge is executed

Ci  measured upper bound on 
time taken by Bi

Want to

maximize  i Ci xi

subject to constraints

x1 = d1 = d2

d1 = 1

x2 = d2+d4 = d3+d5

x3 = d3 = d4 = 10

x4 = d5 = d6

The problem to solve is:

Find integer values xi 
that maximize the sum 
(total execution time) 
subject to the (linear) 
constraint equations.

In general, this is an 
Integer Linear 
Programming (ILP) 
problem, which is known 
to be NP-hard, but for 
which there is good 
software.

Quantitative Analysis, UC Berkeley: 20

Program Path Analysis: Dependencies

void altitude_pid_run(void) {

float err = estimator_z - desired_altitude;

desired_climb = pre_climb + altitude_pgain * err;

if (desired_climb < -CLIMB_MAX) 

desired_climb = -CLIMB_MAX;

if (desired_climb > CLIMB_MAX) 

desired_climb = CLIMB_MAX;

}

Example from “PapaBench” UAV autopilot code, IRIT, France

Only one of these statements is executed

(CLIMB_MAX = 1.0)

How many feasible
paths?



11

Quantitative Analysis, UC Berkeley: 21

Program Path Analysis: Dependencies

void altitude_pid_run(void) {

float err = estimator_z - desired_altitude;

desired_climb = pre_climb + altitude_pgain * err;

if (desired_climb < -CLIMB_MAX) 

desired_climb = -CLIMB_MAX;

if (desired_climb > CLIMB_MAX) 

desired_climb = CLIMB_MAX;

}

Example from “PapaBench” UAV autopilot code, IRIT, France

This adds an additional 
constraint of the form:

xi + xj <= 1

Only one of these statements is executed

(CLIMB_MAX = 1.0)

Quantitative Analysis, UC Berkeley: 22

But the problem gets even harder…
Timing Analysis and Compositionality

Consider a task T with two parts A and B composed in 
sequence:  T = A; B

Is  WCET(T) = WCET(A) + WCET(B)   ?

NOT ALWAYS!

WCETs cannot simply be composed  

 Due to dependencies “through environment”



12

Quantitative Analysis, UC Berkeley: 23

Processor Behavior Analysis: Cache Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously 
starting at address 0x0

What happens 
when n=2?

Quantitative Analysis, UC Berkeley: 24

Recall Direct-
Mapped Cache

Valid Tag Block

Valid Tag Block

Valid Tag Block

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address
matches the tag of the line, then 
we have a “cache hit.” 
Otherwise, the fetch goes to 
main memory, updating the line.



13

Quantitative Analysis, UC Berkeley: 25

This Particular 
Direct-Mapped
Cache

Valid Tag Block

Valid Tag Block

Set 0

Set 1

Tag Set index Block offset

m-1 0

s = 1 bitst = 27 bits b = 4 bits

Address = 32 bits

1 valid bit t tag bits B = 2b bytes per block

CACHE

Four floats per 
block, four bytes 
per float, means 16 
bytes, so b = 4

Quantitative Analysis, UC Berkeley: 26

Processor Behavior Analysis: Cache Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously 
starting at address 0x0

What happens 
when n=2?

x[0] will miss, 
pulling x[0], x[1], 
y[0] and y[0] into 
the set 0. All but 
one access will 
be a cache hit.



14

Quantitative Analysis, UC Berkeley: 27

Processor Behavior Analysis: Cache Effects

Suppose:

1. 32-bit processor

2. Direct-mapped cache holds two sets

 4 floats per set

 x and y stored contiguously 
starting at address 0x0

What happens 
when n=8?

x[0] will miss, 
pulling x[0-3] into 
the set 0. Then 
y[0] will miss, 
pulling y[0-3] into 
the same set, 
evicting x[0-3]. 
Every access will 
be a miss! 

Quantitative Analysis, UC Berkeley: 28

Timing Anomalies

[ from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

Scenario 1: Block A hits in I-cache, triggers branch 
speculation, and prefetch of instructions, then predicted 
branch is wrong, so Block B must execute, but it’s been 
evicted from I-cache, execution of B delayed.

Scenario 2: Block A misses in I-cache, no branch prediction, 
then B hits in I-cache, B completes.

I-Cache Hit

I-Cache Miss

A B (I$ miss due to pre-fetch)

BA (miss in I$)

pre-fetch A

B

Branch evaluated



15

Quantitative Analysis, UC Berkeley: 29

How to Measure Run-Time

Several techniques, with varying accuracy:

 Instrument code to sample CPU cycle counter
 relatively easy to do, read processor documentation for 

assembly instruction

 Use cycle-accurate simulator for processor 
 useful when hardware is not available/ready

 Use Logic Analyzer
 non-intrusive measurement, more accurate

 …

Quantitative Analysis, UC Berkeley: 30

Measurement Pitfalls

 Instrumentation incurs small overhead
 measure long enough code sequence to compensate

 Multi-tasking effects: counter keeps going even when the 
task of interest is inactive
 take multiple measurements and pick “k best” (cluster)

 Multicores/hyperthreading
 Need to ensure that task is ‘locked’ to a single core

 Power management effects
 CPU speed might change, timer could get reset during 

hibernation



16

Quantitative Analysis, UC Berkeley: 31

Some WCET Estimation Tools

Commercial Tools: aiT, RapiTime, …

University/Research Tools: GameTime, Chronos, …
• GameTime: combines machine learning with automated 

theorem proving technology

• Uses Programs as Graphs and integer linear 
programming ideas, but almost everything else different 
from other tools!

See sidebar in Ch 16 for more information.

Quantitative Analysis, UC Berkeley: 32

PROGRAM

PREDICT 
TIMING 

PROPERTIES 
(worst-case, 

distribution, etc.)

Compile Program 
for Platform

LEARNING
ALGORITHM

i1
i2
i3

…

42
75

101

…

online

Measure timing on 
Test Suite directed by 

Learning Algorithm

CONTROL-FLOW
GRAPH (DAG)

Generate Control-Flow 
Graph, Unroll Loops, Inline 

Functions, etc.

SMT SOLVER

i1

i2
i3

Extract FEASIBLE           
BASIS PATHS with 

corresponding Test Cases

TEST 
SUITE

GameTime

Overview



17

Quantitative Analysis, UC Berkeley: 33

Optional Reading Material

Quantitative Analysis, UC Berkeley: 34

Open Problems

 Architectures are getting much more complex. 
 Can we create processor models without the agonizing 

pain? [Yes, employ machine learning from systematic 
measurements  GameTime project]

 Can we change the architecture to make timing analysis 
easier? [Yes, see PRET machine project]

 Analysis methods are “Brittle” – small changes to code 
and/or architecture can require completely re-doing the 
WCET computation
 GameTime project addresses this:

• Use robust techniques that learn about processor/platform 
behavior 

• Need to deal with concurrency, e.g., interrupts

 Need more reliable ways to measure execution time



18

Quantitative Analysis, UC Berkeley: 35

Cycle Counters

Most modern systems have built in registers that are 
incremented every clock cycle

Special assembly code instruction to access

On Intel 32-bit x86 machines since Pentium:
 64 bit counter

 RDTSC instruction (ReaD Time Stamp Counter) sets 
%edx register to high order 32-bits, %eax register to low 
order 32-bits

Wrap-around time for 2 GHz machine
 Low order 32-bits every 2.1 seconds

 High order 64 bits every 293 years

[slide due to R. E. Bryant and D. R. O’Hallaron]

Quantitative Analysis, UC Berkeley: 36

Measuring with Cycle Counter

Idea

 Get current value of cycle counter
• store as pair of unsigned’s cyc_hi and cyc_lo

 Compute something

 Get new value of cycle counter

 Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{

/* Get current value of cycle counter */
access_counter(&cyc_hi, &cyc_lo);

}

[slide due to R. E. Bryant and D. R. O’Hallaron]



19

Quantitative Analysis, UC Berkeley: 37

Accessing the Cycle Counter

 GCC allows inline assembly code with mechanism for 
matching registers with program variables

 Code only works on x86 machine compiling with GCC

Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{

/* Get cycle counter */
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)
: /* No input */
: "%edx", "%eax");

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

Quantitative Analysis, UC Berkeley: 38

Completing Measurement

 Get new value of cycle counter

 Perform double precision subtraction to get elapsed 
cycles
 Express as double to avoid overflow problems

double get_counter()
{

unsigned ncyc_hi, ncyc_lo
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

[slide due to R. E. Bryant and D. R. O’Hallaron]



20

Quantitative Analysis, UC Berkeley: 39

Timing With Cycle Counter

Time Function P
 First attempt: Simply count cycles for one execution of P

What can go wrong here?

double tcycles;
start_counter();
P();
tcycles = get_counter();

[slide due to R. E. Bryant and D. R. O’Hallaron]

Quantitative Analysis, UC Berkeley: 40

Dealing with Overhead & Cache Effects
Always execute function once to “warm up” cache

Keep doubling number of times execute P() until reach 
some threshold

• Used CMIN = 50000

int cnt = 1;
double cmeas = 0;
double cycles;
do  {

int c = cnt;
P(); /* Warm up cache */
get_counter();
while (c-- > 0)

P();
cmeas = get_counter();
cycles = cmeas / cnt;
cnt += cnt;

} while (cmeas < CMIN);  /* Make sure have enough */
return cycles / (1e6 * MHZ);



21

Quantitative Analysis, UC Berkeley: 41

Timing With Cycle Counter

Determine Clock Rate of Processor
 Count number of cycles required for some fixed number 

of seconds

Time Function P
 First attempt: Simply count cycles for one execution of P

double tsecs;
start_counter();
P();
tsecs = get_counter() / (MHZ * 1e6);

double MHZ;
int sleep_time = 10;
start_counter();
sleep(sleep_time);
MHZ = get_counter()/(sleep_time * 1e6);

[slide due to R. E. Bryant and D. R. O’Hallaron]

Quantitative Analysis, UC Berkeley: 42

Measurement Pitfalls

 Instrumentation incurs small overhead
 measure long enough code sequence to compensate

 Cache effects can skew measurements
 “warm up” the cache before making measurement

 Multi-tasking effects: counter keeps going even when the 
task of interest is inactive
 take multiple measurements and pick “k best” (cluster)

 Multicores/hyperthreading
 Need to ensure that task is ‘locked’ to a single core

 Power management effects
 CPU speed might change, timer could get reset during 

hibernation


