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Recall Synchronous Composition:

Synchronous composition
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Recall Asynchronous Composition:

Asynchronous composition
with interleaving semantics
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volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 
timerCount--;

}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);  
... // other init
timerCount = 2000;
while(timerCount != 0) {
... code to run for 2 seconds

}
}

Recall program that does something for 2 
seconds, then stops
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volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 

timerCount--;
}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);  
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

… whatever comes next
}

Position in the program is part of the state

A
B

C

D
E

A key question: Assuming interrupt 
can occur infinitely often, is position 
C always reached?
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volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 

timerCount--;
}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);  
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

… whatever comes next
}

State machine model

A
B

C

D
E

Is asynchronous composition the 
right thing to do here?
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Asynchronous composition

This has transitions that will not occur in practice, 
such as A,D to B,D. Interrupts have priority over 
application code.

A

B

C
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volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 
timerCount--;

}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);  
... // other init
timerCount = 2000;
while(timerCount != 0) {
... code to run for 2 seconds

}
}

Asynchronous vs Synchronous Composition

Is synchronous 
composition the right 
model for this?
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volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 
timerCount--;

}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);  
... // other init
timerCount = 2000;
while(timerCount != 0) {
... code to run for 2 seconds

}
}

Asynchronous vs Synchronous Composition

Is synchronous 
composition the right 
model for this?

Is asynchronous 
composition (with 
interleaving semantics) 
the right model for this?

Answer: no to both.
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Modeling an interrupt controller

FSM model of a single interrupt handler in an interrupt controller:
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Modeling an interrupt controller

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 

timerCount--;
}
… enable interrupts

}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);  
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

}

Note that states can share 
refinements.
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Hierarchical State Machines

Reaction: 
1. First, the refinement of 

the current state (if any) 
reacts. 

2. Then the top-level 
machine reacts.

If both produce outputs, they 
are required to not conflict. 
The two steps are part of the 
same reaction. 

refinement

OR state (being B 
means being in C or D)

[Statecharts, David Harel, 1987]



7

EECS 149/249A, UC Berkeley: 13

Hierarchical State Machines

Example trace:

Simultaneous transitions can produce multiple outputs. These are required 
to not conflict.
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Hierarchical State Machines

Example trace:

simultaneous transitions

Simultaneous transitions can produce multiple outputs. These are required 
to not conflict.
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Hierarchical State Machines

Example trace:

history transition

A history transition implies that when a state with a refinement is left, it is 
nonetheless necessary to remember the state of the refinement.  
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Equivalent Flattened State Machine

Every hierarchical state machine can be transformed into 
an equivalent “flat” state machine.

This transformation can cause the state space to blow up 
substantially.
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Flattening the state machine 
(assuming history transitions):

A history transition implies that when a state 
with a refinement is left, it is nonetheless 
necessary to remember the state of the 
refinement.  Hence A,C and A,D.
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Hierarchical State Machines with 
Reset Transitions

Example trace:

reset transition

A reset transition implies that when a state with a refinement is left, you 
can forget the state of the refinement.  

A reset transition always 
initializes the refinement of 
the destination state to its 
initial state.
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Flattening the state machine 
(assuming reset transitions):

A reset transition implies that when a state with 
a refinement is left, it is not necessary to 
remember the state of the refinement.  Hence 
there are fewer states.
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Preemptive Transitions

A preemptive transition specifies that the 
guard should be evaluated before the 
current state refinement reacts, and if it is 
true, then the current state should not react.
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Summary of Key Concepts

States can have refinements (other modal models)
• OR states

• AND states

Different types of transitions:
• History

• Reset

• Preemptive

EECS 149/249A, UC Berkeley: 22

Modeling an interrupt controller

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 

timerCount--;
}
… enable interrupts

}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);  
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

}

Note that states can share 
refinements.
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Simplified interrupt controller

This abstraction assumes that an interrupt is always 
handled immediately upon being asserted:

int main(void) {
// initialization code
SysTickIntRegister(&ISR);  
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

}

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) { 

timerCount--;
}
… enable interrupts

}

A
B
C

D
E
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Hierarchical interrupt controller

This model assumes further that interrupts are disabled 
in the ISR:

A key question: Assuming 
interrupt can occur infinitely often, 
is state C always reached?
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Hierarchical interrupt controller

This model assumes interrupts are disabled in the ISR:

History transition

Reset, preemptive transition
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Hierarchical composition to model interrupts

Examining this composition machine, it is 
clear that C is not necessarily reached if 
the interrupt occurs infinitely often. If 
assert is present on every reaction, C is 
never reached.

History transition results 
in product state space, 
but hierarchy reduces the 
number of transitions 
compared to 
asynchronous 
composition.
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Hierarchical composition to model interrupts

Under what assumptions/model of 
“assert” would C be reached?

History transition results 
in product state space, 
but hierarchy reduces the 
number of transitions 
compared to 
asynchronous 
composition.
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Communicating FSMs

In this ISR example our FSM models of the main 
program and the ISR communicate via shared variables 
and the FSMs are composed asynchronously.

There are other alternatives for concurrent composition 
(see Chapter 6 of Lee & Seshia).
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Hierarchical FSMs + Synchronous Composition: 
Statecharts [Harel 87]
Modeling with

 Hierarchy (OR states)

 Synchronous composition (AND states)

 Broadcast (for communication)

Example due to Reinhard von Hanxleden
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Summary

 Composition enables building complex systems from 
simpler ones.

 Hierarchical FSMs enable compact representations of 
large state machines.

 These can be converted to single flat FSMs, but the 
resulting FSMs are quite complex and difficult to 
analyze by hand.

 Algorithmic techniques are needed to analyze large 
state spaces (e.g., reachability analysis and model 
checking, see Chapter 13 of Lee & Seshia).


