
1

Introduction to
Embedded Systems

Chapter 5: Hierarchical State Machines

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights
reserved.

EECS 149/249A, UC Berkeley: 2

Recall Synchronous Composition:

Synchronous composition

2

EECS 149/249A, UC Berkeley: 3

Recall Asynchronous Composition:

Asynchronous composition
with interleaving semantics

EECS 149/249A, UC Berkeley: 4

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {
timerCount--;

}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
... // other init
timerCount = 2000;
while(timerCount != 0) {
... code to run for 2 seconds

}
}

Recall program that does something for 2
seconds, then stops

3

EECS 149/249A, UC Berkeley: 5

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

… whatever comes next
}

Position in the program is part of the state

A
B

C

D
E

A key question: Assuming interrupt
can occur infinitely often, is position
C always reached?

EECS 149/249A, UC Berkeley: 6

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

… whatever comes next
}

State machine model

A
B

C

D
E

Is asynchronous composition the
right thing to do here?

4

EECS 149/249A, UC Berkeley: 7

Asynchronous composition

This has transitions that will not occur in practice,
such as A,D to B,D. Interrupts have priority over
application code.

A

B

C

EECS 149/249A, UC Berkeley: 8

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {
timerCount--;

}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
... // other init
timerCount = 2000;
while(timerCount != 0) {
... code to run for 2 seconds

}
}

Asynchronous vs Synchronous Composition

Is synchronous
composition the right
model for this?

5

EECS 149/249A, UC Berkeley: 9

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {
timerCount--;

}
… enable interrupts

}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
... // other init
timerCount = 2000;
while(timerCount != 0) {
... code to run for 2 seconds

}
}

Asynchronous vs Synchronous Composition

Is synchronous
composition the right
model for this?

Is asynchronous
composition (with
interleaving semantics)
the right model for this?

Answer: no to both.

EECS 149/249A, UC Berkeley: 10

Modeling an interrupt controller

FSM model of a single interrupt handler in an interrupt controller:

6

EECS 149/249A, UC Berkeley: 11

Modeling an interrupt controller

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

}

Note that states can share
refinements.

EECS 149/249A, UC Berkeley: 12

Hierarchical State Machines

Reaction:
1. First, the refinement of

the current state (if any)
reacts.

2. Then the top-level
machine reacts.

If both produce outputs, they
are required to not conflict.
The two steps are part of the
same reaction.

refinement

OR state (being B
means being in C or D)

[Statecharts, David Harel, 1987]

7

EECS 149/249A, UC Berkeley: 13

Hierarchical State Machines

Example trace:

Simultaneous transitions can produce multiple outputs. These are required
to not conflict.

EECS 149/249A, UC Berkeley: 14

Hierarchical State Machines

Example trace:

simultaneous transitions

Simultaneous transitions can produce multiple outputs. These are required
to not conflict.

8

EECS 149/249A, UC Berkeley: 15

Hierarchical State Machines

Example trace:

history transition

A history transition implies that when a state with a refinement is left, it is
nonetheless necessary to remember the state of the refinement.

EECS 149/249A, UC Berkeley: 16

Equivalent Flattened State Machine

Every hierarchical state machine can be transformed into
an equivalent “flat” state machine.

This transformation can cause the state space to blow up
substantially.

9

EECS 149/249A, UC Berkeley: 17

Flattening the state machine
(assuming history transitions):

A history transition implies that when a state
with a refinement is left, it is nonetheless
necessary to remember the state of the
refinement. Hence A,C and A,D.

EECS 149/249A, UC Berkeley: 18

Hierarchical State Machines with
Reset Transitions

Example trace:

reset transition

A reset transition implies that when a state with a refinement is left, you
can forget the state of the refinement.

A reset transition always
initializes the refinement of
the destination state to its
initial state.

10

EECS 149/249A, UC Berkeley: 19

Flattening the state machine
(assuming reset transitions):

A reset transition implies that when a state with
a refinement is left, it is not necessary to
remember the state of the refinement. Hence
there are fewer states.

EECS 149/249A, UC Berkeley: 20

Preemptive Transitions

A preemptive transition specifies that the
guard should be evaluated before the
current state refinement reacts, and if it is
true, then the current state should not react.

11

EECS 149/249A, UC Berkeley: 21

Summary of Key Concepts

States can have refinements (other modal models)
• OR states

• AND states

Different types of transitions:
• History

• Reset

• Preemptive

EECS 149/249A, UC Berkeley: 22

Modeling an interrupt controller

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

}

Note that states can share
refinements.

12

EECS 149/249A, UC Berkeley: 23

Simplified interrupt controller

This abstraction assumes that an interrupt is always
handled immediately upon being asserted:

int main(void) {
// initialization code
SysTickIntRegister(&ISR);
… // other init
timerCount = 2000;
while(timerCount != 0) {
… code to run for 2 seconds
}

}

volatile uint timerCount = 0;
void ISR(void) {

… disable interrupts
if(timerCount != 0) {

timerCount--;
}
… enable interrupts

}

A
B
C

D
E

EECS 149/249A, UC Berkeley: 24

Hierarchical interrupt controller

This model assumes further that interrupts are disabled
in the ISR:

A key question: Assuming
interrupt can occur infinitely often,
is state C always reached?

13

EECS 149/249A, UC Berkeley: 25

Hierarchical interrupt controller

This model assumes interrupts are disabled in the ISR:

History transition

Reset, preemptive transition

EECS 149/249A, UC Berkeley: 26

Hierarchical composition to model interrupts

Examining this composition machine, it is
clear that C is not necessarily reached if
the interrupt occurs infinitely often. If
assert is present on every reaction, C is
never reached.

History transition results
in product state space,
but hierarchy reduces the
number of transitions
compared to
asynchronous
composition.

14

EECS 149/249A, UC Berkeley: 27

Hierarchical composition to model interrupts

Under what assumptions/model of
“assert” would C be reached?

History transition results
in product state space,
but hierarchy reduces the
number of transitions
compared to
asynchronous
composition.

EECS 149/249A, UC Berkeley: 28

Communicating FSMs

In this ISR example our FSM models of the main
program and the ISR communicate via shared variables
and the FSMs are composed asynchronously.

There are other alternatives for concurrent composition
(see Chapter 6 of Lee & Seshia).

15

EECS 149/249A, UC Berkeley: 29

Hierarchical FSMs + Synchronous Composition:
Statecharts [Harel 87]
Modeling with

 Hierarchy (OR states)

 Synchronous composition (AND states)

 Broadcast (for communication)

Example due to Reinhard von Hanxleden

EECS 149/249A, UC Berkeley: 30

Summary

 Composition enables building complex systems from
simpler ones.

 Hierarchical FSMs enable compact representations of
large state machines.

 These can be converted to single flat FSMs, but the
resulting FSMs are quite complex and difficult to
analyze by hand.

 Algorithmic techniques are needed to analyze large
state spaces (e.g., reachability analysis and model
checking, see Chapter 13 of Lee & Seshia).

