
1

Introduction to
Embedded Systems

Chapter 10: Input and Output, Interrupts

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights
reserved.

EECS 149/249A, UC Berkeley: 2

Connecting the Analog and Digital Worlds

Semantic mismatch:

Cyber:

• Digital

• Discrete in time

• Sequential

Physical:

• Continuum

• Continuous in time

• Concurrent

2

EECS 149/249A, UC Berkeley: 3

Practical Issues

• Analog vs. digital

• Wired vs. wireless

• Serial vs. parallel

• Sampled or event triggered

• Bit rates

• Access control, security, authentication

• Physical connectors

• Electrical requirements (voltages and currents)

EECS 149/249A, UC Berkeley: 4

A Typical Microcomputer Board
Beaglebone Black from Texas Instruments

This board
has analog
and digital
inputs and
outputs.
What are
they? How
do they
work?

3

EECS 149/249A, UC Berkeley: 5

Wired Connections
Parallel vs. Serial Digital Interfaces

 Parallel (one wire per bit)
 ATA: Advanced Technology Attachment

 PCI: Peripheral Component Interface

 SCSI: Small Computer System Interface

 …

 Serial (one wire per direction)
 RS-232

 SPI: Serial Peripheral Interface bus

 I2C: Inter-Integrated Circuit

 USB: Universal Serial Bus

 SATA: Serial ATA

 …

 Mixed (one or more “lanes”)
 PCIe: PCI Express

PCI

SCSI

USB

RS-232

EECS 149/249A, UC Berkeley: 6

Wired Connections
Parallel vs. Serial Digital Interfaces

Parallel connectors have been steadily replaced by serial
ones.

Why?

4

EECS 149/249A, UC Berkeley: 7

Input/Output Mechanisms in Software

 Polling
 Main loop uses each I/O device periodically.

 If output is to be produced, produce it.

 If input is ready, read it.

 Interrupts
 External hardware alerts the processor that input is ready.

 Processor suspends what it is doing.

 Processor invokes an interrupt service routine (ISR).

 ISR interacts with the application concurrently.

EECS 149/249A, UC Berkeley: 8

Polling

Processor Setup Code

Processor checks I/O control register
for status of peripheral 1

Processor services I/O 1

Processor checks I/O control register
for status of peripheral 2

Processor checks I/O control register
for status of peripheral 3

Processor services I/O
2

Processor services I/O 3

Ready

Ready

Ready

Not Ready

Not Ready

Not Ready

5

EECS 149/249A, UC Berkeley: 9

Example Using a Serial Interface

In an Atmel AVR 8-bit microcontroller, to send a byte
over a serial port, the following C code will do:

while(!(UCSR0A & 0x20));

UDR0 = x;

• x is a variable of type uint8.

• UCSR0A and UDR0 are variables defined in a header.

• They refer to memory-mapped registers in the UART
(Universal Asynchronous Receiver-Transmitter)

EECS 149/249A, UC Berkeley: 10

Send a Sequence of Bytes

for(i = 0; i < 8; i++) {

while(!(UCSR0A & 0x20));

UDR0 = x[i];

}

How long will this take to execute? Assume:

• 57600 baud serial speed.

• 8/57600 =139 microseconds.

• Processor operates at 18 MHz.

Each for loop iteration will consume about 2502 cycles.

6

EECS 149/249A, UC Berkeley: 11

Receiving via UART

Again, on an Atmel AVR:
while(!(UCSR0A & 0x80));

return UDR0;

• Wait until the UART has received an incoming byte.

• The programmer must ensure there will be one!

• If reading a sequence of bytes, how long will this take?

Under the same assumptions as before, it will take about
2502 cycles to receive each byte.

EECS 149/249A, UC Berkeley: 12

Input Mechanisms in Software

 Polling
 Main loop uses each I/O device periodically.

 If output is to be produced, produce it.

 If input is ready, read it.

 Interrupts
 External hardware alerts the processor that input is ready.

 Processor suspends what it is doing.

 Processor invokes an interrupt service routine (ISR).

 ISR interacts with the application concurrently.

7

EECS 149/249A, UC Berkeley: 13

Interrupts

 Interrupt Service Routine
Short subroutine that handles the interrupt

Processor Setup Code

Register the Interrupt Service Routine

Processor executes task code Run Interrupt Service Routine

Interrupt!

Context switch

Resume

EECS 149/249A, UC Berkeley: 14

Interrupts

Triggers:
 A level change on an interrupt request pin
 Writing to an interrupt pin configured as an output (“software

interrupt”)

Responses:
 Disable interrupts.
 Push the current program counter onto the stack.
 Execute the instruction at a designated address in the flash memory.

Design of interrupt service routine:
 Save and restore any registers it uses.
 Re-enable interrupts before returning from interrupt.

Source: ATmega168 Reference Manual

Program memory addresses,
not data memory addresses.

8

EECS 149/249A, UC Berkeley: 15

Berkeley Microblaze
Personality Memory Map

0xFFFFFFFF

0x0000004F

0x0000FFFF

Unmapped Area

ADC subsystem

Memory for
Instructions and Data

Interrupt controller
0x81800000

MicroBlaze
50MHz

MEMORY
BRAM

UART0
UART1

ADC
Subsystem

TIMER

Debugger

Interrupt
controller

0x8180FFFF

Unmapped Area

Timer
0x83C00000

0x83C0FFFF

Unmapped Area

UARTs

Unmapped Area
0x84000000

0x8402FFFF

Debugger

Unmapped Area

Unmapped Area

0x84400000

0x8440FFFF

0xC2200000

0xC220FFFF

Reset, interrupt, … 0x00000000

EECS 149/249A, UC Berkeley: 16

Microblaze Interrupt Policy

• “The interrupt return address (the PC associated with
the instruction in the decode stage at the time of the
interrupt) is automatically loaded into general purpose
register R14.”

• “In addition, the processor also disables future
interrupts by clearing the IE [Interrupt Enable] bit in
the MSR [Machine Status Register]. The IE bit is
automatically set again when executing the RTID
instruction.”

Source: Microblaze datasheet

9

EECS 149/249A, UC Berkeley: 17

Timed Interrupt

Timer

Update Tick / Sample

When timer expires,
interrupt processor

Reset timer

Processor jumps to ISR

Resumes

Processor Setup

Register Interrupt Service Routine

Initialize Timer

Execute Task Code

EECS 149/249A, UC Berkeley: 18

Example: Set up a timer on an ATmega168 to
trigger an interrupt every 1ms.

 TCCR: Timer/Counter Control Register

 OCR: output compare register

 TIMSK: Timer Interrupt Mask

The “prescaler” value divides the system
clock to drive the timer.

Setting a non-zero bit in the timer
interrupt mask causes an interrupt to
occur when the timer resets.

Source: iRobot Command Module Reference Manual v6

10

EECS 149/249A, UC Berkeley: 19

Setting up the timer interrupt hardware in C

#include <avr/io.h>

int main (void) {

TCCR1A = 0x00;

TCCR1B = 0x0C;

OCR1A = 71;

TIMSK1 = 0x02;

...

}

This code sets the hardware up
to trigger an interrupt every 1ms.
How do we handle the interrupt? Source: ATmega168 Reference Manual

memory-
mapped
register.

But how is this
proper C code?

EECS 149/249A, UC Berkeley: 20

void initialize(void) {
cli();

// Set I/O pins
DDRB = 0x10;
PORTB = 0xCF;
…….

// Set up timer 1 to generate an interrupt every 1 ms
TCCR1A = 0x00;
TCCR1B = (_BV(WGM12) | _BV(CS12));
OCR1A = 71;
TIMSK1 = _BV(OCIE1A);

// Set up the serial port with rx interrupt
…….

// Turn on interrupts
sei();

}

// Global variables
volatile uint16_t timer_cnt = 0;
volatile uint8_t timer_on = 0;

// Timer 1 interrupt to time delays in ms
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_cnt) {
timer_cnt--;

} else {
timer_on = 0;

}
}

void delayMs(uint16_t time_ms) {
timer_on = 1;
timer_cnt = time_ms;
while(timer_on) ;

}

//Enable interrupts (interrupt.h)
define sei() __asm__ __volatile__ ("sei" ::)
//Disable interrupts (interrupt.h)
define cli() __asm__ __volatile__ ("cli" ::)
#define SIGNAL(signame) \
void signame (void) __attribute__ ((signal)); \
void signame (void)

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))
#define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr) + 0x20)
#define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr)
#define _BV(bit) (1 << (bit))

//Timer defines (iomx8.h)
#define TCCR1A _SFR_MEM8 (0x80)
#define TCCR1B _SFR_MEM8 (0x81)
/* TCCR1B */
#define WGM12 3
#define CS12 2

11

EECS 149/249A, UC Berkeley: 21

Setting up the timer interrupt hardware in C

#include <avr/io.h>

int main (void) {

TCCR1A = 0x00;

TCCR1B = 0x0C;

OCR1A = 71;

TIMSK1 = 0x02;

...

}

Source: ATmega168 Reference Manual

(*(volatile uint8_t *) (0x80)) = 0x00;

EECS 149/249A, UC Berkeley: 22

Example 2: Set up a timer on a Luminary Micro
board to trigger an interrupt every 1ms.

// Setup and enable SysTick with interrupt every 1ms

void initTimer(void) {

SysTickPeriodSet(SysCtlClockGet() / 1000);

SysTickEnable();

SysTickIntEnable();

}

// Disable SysTick

void disableTimer(void) {

SysTickIntDisable();

SysTickDisable();

}

Source: Stellaris Peripheral Driver Library User’s Guide

Number of cycles per sec.

Start SysTick counter

Enable SysTick timer interrupt

12

EECS 149/249A, UC Berkeley: 23

volatile uint timer_count;
void ISR(void) {

timer_count--;
}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);
... // other init
timer_count = 2000;
while(timer_count != 0) {
... code to run for 2 seconds

}
}

Example: Do something for 2 seconds then stop

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

static variable: declared outside
main() puts them in statically
allocated memory (not on the
stack)

Interrupt service routine

Registering the ISR to be invoked
on every SysTick interrupt

EECS 149/249A, UC Berkeley: 24

volatile uint timer_count;
void ISR(void) {

timer_count--;
}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);
... // other init
timer_count = 2000;
while(timer_count != 0) {
... code to run for 2 seconds

}
}

Concurrency

concurrent code:
logically runs at the
same time. In this case,
between any two
machine instructions in
main() an interrupt can
occur and the upper
code can execute.

What could go wrong?

13

EECS 149/249A, UC Berkeley: 25

volatile uint timer_count;
void ISR(void) {

timer_count--;
}

int main(void) {
// initialization code
SysTickIntRegister(&ISR);
... // other init
timer_count = 2000;
while(timer_count != 0) {
... code to run for 2 seconds

}
}

Concurrency

What could go wrong?

what if the interrupt
occurs twice during
the execution of this
code?

EECS 149/249A, UC Berkeley: 26

volatile uint timer_count = 0;
void ISR(void) {

if(timer_count != 0) {
timer_count--;

}
}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
... // other init
timer_count = 2000;
while(timer_count != 0) {
... code to run for 2 seconds

}
}

Improved Example

14

EECS 149/249A, UC Berkeley: 27

volatile uint timer_count = 0;
void ISR(void) {

if(timer_count != 0) {
timer_count--;

}
}
int main(void) {

// initialization code
SysTickIntRegister(&ISR);
... // other init
timer_count = 2000;
while(timer_count != 0) {
... code to run for 2 seconds

}
}

Reasoning about concurrent code

can an interrupt
occur here? If it can,
what happens?

EECS 149/249A, UC Berkeley: 28

Issues to Watch For

• Interrupt service routine execution time

• Context switch time

• Nesting of higher priority interrupts

• Interactions between ISR and the application

• Interactions between ISRs

• …

15

EECS 149/249A, UC Berkeley: 29

A question:

What’s the difference between

Concurrency

and

Parallelism

EECS 149/249A, UC Berkeley: 30

Concurrency and Parallelism

A program is said to be concurrent if different parts of
the program conceptually execute simultaneously.

A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct
hardware.

A parallel program is concurrent, but a concurrent
program need not be parallel.

16

EECS 149/249A, UC Berkeley: 31

Concurrency in Computing

 Interrupt Handling
 Reacting to external events (interrupts)

 Exception handling (software interrupts)

 Processes
 Creating the illusion of simultaneously running

different programs (multitasking)

 Threads
 How is a thread different from a process?

 Multiple processors (multi-cores)

. . .

EECS 149/249A, UC Berkeley: 32

Summary

Interrupts introduce a great deal of nondeterminism into a
computation. Very careful reasoning about the design is
necessary.

