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Role of Memory in Embedded Systems

Traditional roles: Storage and Communication for 
Programs

Communication with Sensors and Actuators

Often much more constrained than in general-purpose 
computing
• Size, power, reliability, etc.

Can be important for programmers to understand these 
constraints



2

EECS 149/249A, UC Berkeley: 3

Memory Architecture: Issues

 Types of memory
 volatile vs. non-volatile, SRAM vs. DRAM

 Memory maps
 Harvard architecture
 Memory-mapped I/O

 Memory organization
 statically allocated
 stacks
 heaps (allocation, fragmentation, garbage collection)

 The memory model of C
 Memory hierarchies

 scratchpads, caches, virtual memory)

 Memory protection
 segmented spaces

These issues loom 
larger in embedded 

systems than in 
general-purpose 

computing.
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Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory

• Invented by Dov Frohman of Intel in 1971

• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory

• Invented by George Perlegos at Intel in 1978

• Flash memory
• Invented by Dr. Fujio Masuoka at Toshiba around 1980

• Erased a “block” at a time

• Limited number of program/erase cycles (~ 100,000)

• Controllers can get quite complex

• Disk drives
• Not as well suited for embedded systems

USB Drive

Images from the Wikimedia Commons
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Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory
• Fast, deterministic access time

• But more power hungry and less dense than DRAM

• Used for caches, scratchpads, and small embedded memories

• DRAM: dynamic random-access memory
• Slower than SRAM

• Access time depends on the sequence of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh (typically every 64msec)

• Typically used for main memory

• Boot loader
• On power up, transfers data from non-volatile to volatile memory.
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Example: 

Die of a 
STM32F103VGT6 
ARM Cortex-M3 
microcontroller with 
1 megabyte flash 
memory by 
STMicroelectronics.

Image from Wikimedia Commons
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Memory Map 
of an ARM 
CortexTM - M3 
architecture

Defines the 
mapping of 
addresses to 
physical memory.

Note that this does 
not define how 
much physical 
memory there is!

EECS 149/249A, UC Berkeley: 8

Another Example: Atmel AVR

The AVR is an 8-bit single chip microcontroller first developed 
by Atmel in 1996. The AVR was one of the first microcontroller 
families to use on-chip flash memory for program storage. It 
has a modified Harvard architecture.1

AVR was conceived by two students at the Norwegian 
Institute of Technology (NTH) Alf-Egil Bogen and Vegard
Wollan.

1 A Harvard architecture uses separate memory spaces for program and data. It 
originated with the Harvard Mark I relay-based computer (used during World War 
II), which stored the program on punched tape (24 bits wide) and the data in 
electro-mechanical counters.
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A Use of AVR: Arduino

Arduino is a family of open-source hardware boards built 
around either 8-bit AVR processors or 32-bit ARM 
processors.

Example:
Atmel AVR 
Atmega328 
28-pin DIP on an 
Arduino Duemilanove
board

Image from Wikimedia Commons
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Atmel ATMega 168
Microcontroller 

Another example use 
of an AVR processor

The 
iRobot Create 

Command Module
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ATMega 168: An 8-bit microcontroller 
with 16-bit addresses

Why is it called an 8-bit 
microcontroller?

AVR microcontroller 
architecture used in 
iRobot command 
module.
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ATMega168 Memory Architecture
An 8-bit microcontroller with 16-bit addresses

iRobot 
command 
module has 
16K bytes 
flash memory 
(14,336 
available for 
the user 
program. 
Includes 
interrupt 
vectors and 
boot loader.)

1 k bytes RAM

Additional I/O on the 
command module:
• Two 8-bit timer/counters
• One 16-bit timer/counter
• 6 PWM channels
• 8-channel, 10-bit ADC
• One serial UART
• 2-wire serial interface

Source: ATmega168 Reference Manual

The “8-bit data” is why 
this is called an “8-bit 
microcontroller.”
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Questions to test your understanding

1. What is the difference between an 8-bit 
microcontroller and a 32-bit microcontroller?

2. Why use volatile memory? Why not always use non-
volatile memory?
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Memory Organization for Programs

• Statically-allocated memory
• Compiler chooses the address at which to store a 

variable.

• Stack
• Dynamically allocated memory with a Last-in, First-out 

(LIFO) strategy

• Heap
• Dynamically allocated memory
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Statically-Allocated Memory in C

char x;

int main(void) {

x = 0x20;

…

}

Compiler chooses what address to use for x, and the variable 
is accessible across procedures. The variable’s lifetime is the 
total duration of the program execution.
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Statically-Allocated Memory with Limited Scope

void foo(void) {

static char x;

x = 0x20;

…

}

Compiler chooses what address to use for x, but the variable 
is meant to be accessible only in foo(). The variable’s lifetime 
is the total duration of the program execution (values persist 
across calls to foo()).
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Variables on the Stack
(“automatic variables”)

void foo(void) {

char x;

x = 0x20;

…

}

When the procedure is called, x is assigned an address on the 
stack (by decrementing the stack pointer). When the 
procedure returns, the memory is freed (by incrementing the 
stack pointer). The variable persists only for the duration of 
the call to foo().

stack

As nested procedures get called, the 
stack pointer moves to lower memory 
addresses. When these procedures, 
return, the pointer moves up.
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Question 1

What is meant by the 
following C code:

char x;

void foo(void) {

x = 0x20;

…

}
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Answer 1

What is meant by the 
following C code:

char x;

void foo(void) {

x = 0x20;

…

}

An 8-bit quantity (hex 0x20) is 
stored at an address in statically 
allocated memory in internal RAM 
determined by the compiler.
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Question 2

What is meant by the 
following C code:

char *x;

void foo(void) {

x = 0x20;

…

}
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Answer 2

What is meant by the 
following C code:

char *x;

void foo(void) {

x = 0x20;

…

}

An 16-bit quantity (hex 0x0020) is 
stored at an address in statically 
allocated memory in internal RAM 
determined by the compiler.
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Question 3

What is meant by the 
following C code:

char *x, y;

void foo(void) {

x = 0x20;

y = *x;

…

}
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Answer 3

What is meant by the 
following C code:

char *x, y;

void foo(void) {

x = 0x20;

y = *x;

…

}

The 8-bit quantity in the I/O 
register at location 0x20 is loaded 
into y, which is at a location in 
Internal SRAM determined by the 
compiler.
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Question 4
char foo() {

char *x, y;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

Where are x, y, z in memory?
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Answer 4
char foo() {

char *x, y;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

x occupies 2 bytes on the 
stack, y occupies 1 byte on 
the stack, and z occupies 1 
byte in static memory.
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Question 5

What is meant by the 
following C code:

void foo(void) {

char *x, y;

x = &y;

*x = 0x20;

…

}
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Answer 5

What is meant by the 
following C code:

void foo(void) {

char *x, y;

x = &y;

*x = 0x20;

…

}

16 bits for x and 8 bits for y are 
allocated on the stack, then x is 
loaded with the address of y, and 
then y is loaded with the 8-bit 
quantity 0x20.
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Question 6
What goes into z in the 
following program:

char foo() {

char y;

uint16_t x;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}
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Answer 6
What goes into z in the 
following program:

char foo() {

char y;

uint16_t x;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

z is loaded with the 8-bit quantity in 
the I/O register at location 0x20.
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Quiz: Find the flaw in this program 
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}
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Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10, 
and z go on the stack (and 
possibly more, depending on the 
compiler).

The procedure foo() returns a pointer to a variable 
on the stack. What if another procedure call (or 
interrupt) occurs before the returned pointer is 
de-referenced?
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Watch out for Recursion!!
Quiz: What is the Final Value of z?

void foo(uint16_t x) {

char y;

y = *x;

if (x > 0x100) {

foo(x – 1);

}

}

char z;

void main(…) {

z = 0x10;

foo(0x04FF);

…

}
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Dynamically-Allocated Memory 
The Heap

An operating system typically offers a way to dynamically 
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many 
problems with embedded systems:

 Memory leaks (allocated memory is never freed)

 Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) often require 
stopping everything and reorganizing the allocated memory. 
This is deadly for real-time programs.
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Other Issues

• Memory hierarchy
• Cache: 

• A subset of memory addresses is mapped to SRAM

• Accessing an address not in SRAM results in cache miss

• A miss is handled by copying contents of DRAM to SRAM

• Scratchpad:
• SRAM and DRAM occupy disjoint regions of memory space

• Software manages what is stored where

• Segmentation
• Logical addresses are mapped to a subset of physical addresses

• Permissions regulate which tasks can access which memory

See your textbook for more details.
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Memory Hierarchy

Here, the cache or scratchpad, main memory, and disk or 
flash share the same address space.

CPU

registers

Cache
or

scratch
pad

Disk or Flash

register address fits 
within one 

instruction word

SRAM DRAM

Main memory

Memory-
mapped I/O 

devices
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Memory Hierarchy

Here, each distinct 
piece of memory 
hardware has its own 
segment of the 
address space.

This requires more 
careful software 
design, but gives 
more direct control 
over timing.

CPU

registers

Cache
or

scratch
pad

Disk or Flash

register address 
fits within one 

instruction word

SRAM

DRAM

Main 
memory

Memory-
mapped I/O 

devices
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Direct-Mapped
Cache

Valid Tag Block

Valid Tag Block

Valid Tag Block

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address
matches the tag of the line, then 
we have a “cache hit.” 
Otherwise, the fetch goes to 
main memory, updating the line.
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Set-Associative
Cache

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 
several “lines”

Tag matching is done using an 
“associative memory” or 
“content-addressable memory.”



20

EECS 149/249A, UC Berkeley: 39

Set-Associative
Cache

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of 
several “lines”

A “cache miss” requires a 
replacement policy (like 
LRU or FIFO).
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Your Lab Hardware
(2014 & 2015)

myRIO 1950/1900

(National Instruments)

Xilinx Zynq Z-7010

• ARM Cortex-A9 MPCore dual core processor

• Real-time Linux
• Xilinx Artix-7 FPGA

• Preconfigured with a 32-bit MicroBlaze
microprocessor running without an 
operating system (“bare metal”).
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Xilinx Zynq

Dual-core 
ARM 
processor 
+ FPGA 
+ rich I/O

on a single 
chip. 

EECS 149/249A, UC Berkeley: 42

Microblaze I/O Architecture

Source: 
Xilinx
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Microblaze I/O Architecture

Source: 
Xilinx
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Berkeley Microblaze
Personality Memory Map

MicroBlaze
50MHz

MEMORY
BRAM

UART0
UART1

ADC
Subsystem

TIMER

Debugger

0xFFFFFFFF

0x00000000

0x0000FFFF

Unmapped Area

ADC subsystem

Memory for 
Instructions and Data 

Interrupt controller
0x81800000

Interrupt 
controller

0x8180FFFF

Unmapped Area

Timer
0x83C00000

0x83C0FFFF

Unmapped Area

UARTs

Unmapped Area
0x84000000

0x8402FFFF

Debugger

Unmapped Area

Unmapped Area

0x84400000

0x8440FFFF

0xC2200000

0xC220FFFF
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Conclusion

Understanding memory architectures is essential to 
programming embedded systems.


