
1

Introduction to
Embedded Systems

Chapter 9: Memory Architectures

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights
reserved.

EECS 149/249A, UC Berkeley: 2

Role of Memory in Embedded Systems

Traditional roles: Storage and Communication for
Programs

Communication with Sensors and Actuators

Often much more constrained than in general-purpose
computing
• Size, power, reliability, etc.

Can be important for programmers to understand these
constraints

2

EECS 149/249A, UC Berkeley: 3

Memory Architecture: Issues

 Types of memory
 volatile vs. non-volatile, SRAM vs. DRAM

 Memory maps
 Harvard architecture
 Memory-mapped I/O

 Memory organization
 statically allocated
 stacks
 heaps (allocation, fragmentation, garbage collection)

 The memory model of C
 Memory hierarchies

 scratchpads, caches, virtual memory)

 Memory protection
 segmented spaces

These issues loom
larger in embedded

systems than in
general-purpose

computing.

EECS 149/249A, UC Berkeley: 4

Non-Volatile Memory
Preserves contents when power is off

• EPROM: erasable programmable read only memory

• Invented by Dov Frohman of Intel in 1971

• Erase by exposing the chip to strong UV light

• EEPROM: electrically erasable programmable read-only memory

• Invented by George Perlegos at Intel in 1978

• Flash memory
• Invented by Dr. Fujio Masuoka at Toshiba around 1980

• Erased a “block” at a time

• Limited number of program/erase cycles (~ 100,000)

• Controllers can get quite complex

• Disk drives
• Not as well suited for embedded systems

USB Drive

Images from the Wikimedia Commons

3

EECS 149/249A, UC Berkeley: 5

Volatile Memory
Loses contents when power is off.

• SRAM: static random-access memory
• Fast, deterministic access time

• But more power hungry and less dense than DRAM

• Used for caches, scratchpads, and small embedded memories

• DRAM: dynamic random-access memory
• Slower than SRAM

• Access time depends on the sequence of addresses

• Denser than SRAM (higher capacity)

• Requires periodic refresh (typically every 64msec)

• Typically used for main memory

• Boot loader
• On power up, transfers data from non-volatile to volatile memory.

EECS 149/249A, UC Berkeley: 6

Example:

Die of a
STM32F103VGT6
ARM Cortex-M3
microcontroller with
1 megabyte flash
memory by
STMicroelectronics.

Image from Wikimedia Commons

4

EECS 149/249A, UC Berkeley: 7

Memory Map
of an ARM
CortexTM - M3
architecture

Defines the
mapping of
addresses to
physical memory.

Note that this does
not define how
much physical
memory there is!

EECS 149/249A, UC Berkeley: 8

Another Example: Atmel AVR

The AVR is an 8-bit single chip microcontroller first developed
by Atmel in 1996. The AVR was one of the first microcontroller
families to use on-chip flash memory for program storage. It
has a modified Harvard architecture.1

AVR was conceived by two students at the Norwegian
Institute of Technology (NTH) Alf-Egil Bogen and Vegard
Wollan.

1 A Harvard architecture uses separate memory spaces for program and data. It
originated with the Harvard Mark I relay-based computer (used during World War
II), which stored the program on punched tape (24 bits wide) and the data in
electro-mechanical counters.

5

EECS 149/249A, UC Berkeley: 9

A Use of AVR: Arduino

Arduino is a family of open-source hardware boards built
around either 8-bit AVR processors or 32-bit ARM
processors.

Example:
Atmel AVR
Atmega328
28-pin DIP on an
Arduino Duemilanove
board

Image from Wikimedia Commons

EECS 149/249A, UC Berkeley: 10

Atmel ATMega 168
Microcontroller

Another example use
of an AVR processor

The
iRobot Create

Command Module

6

EECS 149/249A, UC Berkeley: 11

ATMega 168: An 8-bit microcontroller
with 16-bit addresses

Why is it called an 8-bit
microcontroller?

AVR microcontroller
architecture used in
iRobot command
module.

EECS 149/249A, UC Berkeley: 12

ATMega168 Memory Architecture
An 8-bit microcontroller with 16-bit addresses

iRobot
command
module has
16K bytes
flash memory
(14,336
available for
the user
program.
Includes
interrupt
vectors and
boot loader.)

1 k bytes RAM

Additional I/O on the
command module:
• Two 8-bit timer/counters
• One 16-bit timer/counter
• 6 PWM channels
• 8-channel, 10-bit ADC
• One serial UART
• 2-wire serial interface

Source: ATmega168 Reference Manual

The “8-bit data” is why
this is called an “8-bit
microcontroller.”

7

EECS 149/249A, UC Berkeley: 13

Questions to test your understanding

1. What is the difference between an 8-bit
microcontroller and a 32-bit microcontroller?

2. Why use volatile memory? Why not always use non-
volatile memory?

EECS 149/249A, UC Berkeley: 14

Memory Organization for Programs

• Statically-allocated memory
• Compiler chooses the address at which to store a

variable.

• Stack
• Dynamically allocated memory with a Last-in, First-out

(LIFO) strategy

• Heap
• Dynamically allocated memory

8

EECS 149/249A, UC Berkeley: 15

Statically-Allocated Memory in C

char x;

int main(void) {

x = 0x20;

…

}

Compiler chooses what address to use for x, and the variable
is accessible across procedures. The variable’s lifetime is the
total duration of the program execution.

EECS 149/249A, UC Berkeley: 16

Statically-Allocated Memory with Limited Scope

void foo(void) {

static char x;

x = 0x20;

…

}

Compiler chooses what address to use for x, but the variable
is meant to be accessible only in foo(). The variable’s lifetime
is the total duration of the program execution (values persist
across calls to foo()).

9

EECS 149/249A, UC Berkeley: 17

Variables on the Stack
(“automatic variables”)

void foo(void) {

char x;

x = 0x20;

…

}

When the procedure is called, x is assigned an address on the
stack (by decrementing the stack pointer). When the
procedure returns, the memory is freed (by incrementing the
stack pointer). The variable persists only for the duration of
the call to foo().

stack

As nested procedures get called, the
stack pointer moves to lower memory
addresses. When these procedures,
return, the pointer moves up.

EECS 149/249A, UC Berkeley: 18

Question 1

What is meant by the
following C code:

char x;

void foo(void) {

x = 0x20;

…

}

10

EECS 149/249A, UC Berkeley: 19

Answer 1

What is meant by the
following C code:

char x;

void foo(void) {

x = 0x20;

…

}

An 8-bit quantity (hex 0x20) is
stored at an address in statically
allocated memory in internal RAM
determined by the compiler.

EECS 149/249A, UC Berkeley: 20

Question 2

What is meant by the
following C code:

char *x;

void foo(void) {

x = 0x20;

…

}

11

EECS 149/249A, UC Berkeley: 21

Answer 2

What is meant by the
following C code:

char *x;

void foo(void) {

x = 0x20;

…

}

An 16-bit quantity (hex 0x0020) is
stored at an address in statically
allocated memory in internal RAM
determined by the compiler.

EECS 149/249A, UC Berkeley: 22

Question 3

What is meant by the
following C code:

char *x, y;

void foo(void) {

x = 0x20;

y = *x;

…

}

12

EECS 149/249A, UC Berkeley: 23

Answer 3

What is meant by the
following C code:

char *x, y;

void foo(void) {

x = 0x20;

y = *x;

…

}

The 8-bit quantity in the I/O
register at location 0x20 is loaded
into y, which is at a location in
Internal SRAM determined by the
compiler.

EECS 149/249A, UC Berkeley: 24

Question 4
char foo() {

char *x, y;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

Where are x, y, z in memory?

13

EECS 149/249A, UC Berkeley: 25

Answer 4
char foo() {

char *x, y;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

x occupies 2 bytes on the
stack, y occupies 1 byte on
the stack, and z occupies 1
byte in static memory.

EECS 149/249A, UC Berkeley: 26

Question 5

What is meant by the
following C code:

void foo(void) {

char *x, y;

x = &y;

*x = 0x20;

…

}

14

EECS 149/249A, UC Berkeley: 27

Answer 5

What is meant by the
following C code:

void foo(void) {

char *x, y;

x = &y;

*x = 0x20;

…

}

16 bits for x and 8 bits for y are
allocated on the stack, then x is
loaded with the address of y, and
then y is loaded with the 8-bit
quantity 0x20.

EECS 149/249A, UC Berkeley: 28

Question 6
What goes into z in the
following program:

char foo() {

char y;

uint16_t x;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

15

EECS 149/249A, UC Berkeley: 29

Answer 6
What goes into z in the
following program:

char foo() {

char y;

uint16_t x;

x = 0x20;

y = *x;

return y;

}

char z;

int main(void) {

z = foo();

…

}

z is loaded with the 8-bit quantity in
the I/O register at location 0x20.

EECS 149/249A, UC Berkeley: 30

Quiz: Find the flaw in this program
(begin by thinking about where each variable is allocated)

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

16

EECS 149/249A, UC Berkeley: 31

Solution: Find the flaw in this program

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter, argument 10,
and z go on the stack (and
possibly more, depending on the
compiler).

The procedure foo() returns a pointer to a variable
on the stack. What if another procedure call (or
interrupt) occurs before the returned pointer is
de-referenced?

EECS 149/249A, UC Berkeley: 32

Watch out for Recursion!!
Quiz: What is the Final Value of z?

void foo(uint16_t x) {

char y;

y = *x;

if (x > 0x100) {

foo(x – 1);

}

}

char z;

void main(…) {

z = 0x10;

foo(0x04FF);

…

}

17

EECS 149/249A, UC Berkeley: 33

Dynamically-Allocated Memory
The Heap

An operating system typically offers a way to dynamically
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to many
problems with embedded systems:

 Memory leaks (allocated memory is never freed)

 Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) often require
stopping everything and reorganizing the allocated memory.
This is deadly for real-time programs.

EECS 149/249A, UC Berkeley: 34

Other Issues

• Memory hierarchy
• Cache:

• A subset of memory addresses is mapped to SRAM

• Accessing an address not in SRAM results in cache miss

• A miss is handled by copying contents of DRAM to SRAM

• Scratchpad:
• SRAM and DRAM occupy disjoint regions of memory space

• Software manages what is stored where

• Segmentation
• Logical addresses are mapped to a subset of physical addresses

• Permissions regulate which tasks can access which memory

See your textbook for more details.

18

EECS 149/249A, UC Berkeley: 35

Memory Hierarchy

Here, the cache or scratchpad, main memory, and disk or
flash share the same address space.

CPU

registers

Cache
or

scratch
pad

Disk or Flash

register address fits
within one

instruction word

SRAM DRAM

Main memory

Memory-
mapped I/O

devices

EECS 149/249A, UC Berkeley: 36

Memory Hierarchy

Here, each distinct
piece of memory
hardware has its own
segment of the
address space.

This requires more
careful software
design, but gives
more direct control
over timing.

CPU

registers

Cache
or

scratch
pad

Disk or Flash

register address
fits within one

instruction word

SRAM

DRAM

Main
memory

Memory-
mapped I/O

devices

19

EECS 149/249A, UC Berkeley: 37

Direct-Mapped
Cache

Valid Tag Block

Valid Tag Block

Valid Tag Block

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of one “line”

If the tag of the address
matches the tag of the line, then
we have a “cache hit.”
Otherwise, the fetch goes to
main memory, updating the line.

EECS 149/249A, UC Berkeley: 38

Set-Associative
Cache

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of
several “lines”

Tag matching is done using an
“associative memory” or
“content-addressable memory.”

20

EECS 149/249A, UC Berkeley: 39

Set-Associative
Cache

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

A “set” consists of
several “lines”

A “cache miss” requires a
replacement policy (like
LRU or FIFO).

EECS 149/249A, UC Berkeley: 40

Your Lab Hardware
(2014 & 2015)

myRIO 1950/1900

(National Instruments)

Xilinx Zynq Z-7010

• ARM Cortex-A9 MPCore dual core processor

• Real-time Linux
• Xilinx Artix-7 FPGA

• Preconfigured with a 32-bit MicroBlaze
microprocessor running without an
operating system (“bare metal”).

21

EECS 149/249A, UC Berkeley: 41

Xilinx Zynq

Dual-core
ARM
processor
+ FPGA
+ rich I/O

on a single
chip.

EECS 149/249A, UC Berkeley: 42

Microblaze I/O Architecture

Source:
Xilinx

22

EECS 149/249A, UC Berkeley: 43

Microblaze I/O Architecture

Source:
Xilinx

EECS 149/249A, UC Berkeley: 44

Berkeley Microblaze
Personality Memory Map

MicroBlaze
50MHz

MEMORY
BRAM

UART0
UART1

ADC
Subsystem

TIMER

Debugger

0xFFFFFFFF

0x00000000

0x0000FFFF

Unmapped Area

ADC subsystem

Memory for
Instructions and Data

Interrupt controller
0x81800000

Interrupt
controller

0x8180FFFF

Unmapped Area

Timer
0x83C00000

0x83C0FFFF

Unmapped Area

UARTs

Unmapped Area
0x84000000

0x8402FFFF

Debugger

Unmapped Area

Unmapped Area

0x84400000

0x8440FFFF

0xC2200000

0xC220FFFF

23

EECS 149/249A, UC Berkeley: 45

Conclusion

Understanding memory architectures is essential to
programming embedded systems.

