
1

Introduction to
Embedded Systems

Sanjit A. Seshia
UC Berkeley

EECS 149/249A

Fall 2015

© 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights
reserved.

Chapter 6 - Models of Computation:
Synchronous/Reactive and Dataflow

Lee & Seshia, UC Berkeley: 2

Concurrent Composition:
Alternatives to Threads

Threads yield incomprehensible behaviors.

Composition of State Machines:

• Side-by-side composition

• Cascade composition

• Feedback composition

We will begin with synchronous composition, an abstraction
that has been very effectively used in hardware design and
is gaining popularity in software design.

2

Lee & Seshia, UC Berkeley: 3

Recall: Actor Model for State Machines

Expose inputs and outputs, enabling composition:

Lee & Seshia, UC Berkeley: 4

Recall: Actor Model of Continuous-Time Systems

A system is a function that
accepts an input signal and
yields an output signal.

The domain and range of
the system function are
sets of signals, which
themselves are functions.

Parameters may affect the
definition of the function S.

3

Lee & Seshia, UC Berkeley: 5

Recall: Composition of Actors

Angular velocity
appears on both
sides. The semantics
(meaning) of the
model is the solution
to this equation.

We will now generalize this notion of composition.

Lee & Seshia, UC Berkeley: 6

Side-by-Side Composition

Synchronous composition: the machines react
simultaneously and instantaneously.

4

Lee & Seshia, UC Berkeley: 7

Cascade Composition

Synchronous composition: the machines react
simultaneously and instantaneously, despite the apparent
causal relationship!

Lee & Seshia, UC Berkeley: 8

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

Consider a cascade composition as follows:

5

Lee & Seshia, UC Berkeley: 9

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

In this model, you must not think of machine A as reacting before machine
B. If it did, the unreachable states would not be unreachable.

unreachable

Lee & Seshia, UC Berkeley: 10

Feedback Composition

Turns out everything can be viewed as feedback composition…

6

Lee & Seshia, UC Berkeley: 11

Observation: Any Composition is a
Feedback Composition

s S N

The behavior of the system
is a “fixed point.”

Lee & Seshia, UC Berkeley: 12

Fixed Point Semantics

s S N

Consider an
interconnection of actors

Abstract actors
Abstract signals

Reorganiz
e

We seek an s S N

that satisfies F(s) = s.

Such an s is called a
fixed point.

We would like the
fixed point to exist
and be unique. And
we would like a
constructive
procedure to find it.

It is the behavior of
the system.

7

Lee & Seshia, UC Berkeley: 13

Data Types

x y

s

Lee & Seshia, UC Berkeley: 14

Firing Functions

x y

s

8

Lee & Seshia, UC Berkeley: 15

Well-Formed Feedback

x y

s

Lee & Seshia, UC Berkeley: 16

Well-Formed Example

9

Lee & Seshia, UC Berkeley: 17

Composite Machine

Lee & Seshia, UC Berkeley: 18

Ill-Formed Example 1 (Existence)

10

Lee & Seshia, UC Berkeley: 19

Ill-Formed Example 2 (Uniqueness)

Lee & Seshia, UC Berkeley: 20

Constructive Semantics: Single Signal

11

Lee & Seshia, UC Berkeley: 21

Non-Constructive Well-Formed State Machine

Lee & Seshia, UC Berkeley: 22

Must / May Analysis

12

Lee & Seshia, UC Berkeley: 23

Constructive Semantics: Multiple Signals

Lee & Seshia, UC Berkeley: 24

Constructive Semantics: Multiple Actors

Procedure is the same.

13

Lee & Seshia, UC Berkeley: 25

Constructive Semantics: Arbitrary Structure

Procedure is the same.

A state machine language with constructive semantics
will reject all compositions that in any iteration fail to
make all signals known.

Such a language rejects some well-formed compositions.

Lee & Seshia, UC Berkeley: 26

Synchronous Reactive Models: Conclusions

The emphasis of synchronous composition, in contrast
with threads, is on determinate and analyzable
concurrency.

Although there are subtleties with synchronous
programs, all constructive synchronous programs have a
unique and well-defined meaning.

Automated tools can systematically explore all possible
behaviors. This is not possible in general with threads.

14

Introduction to
Embedded Systems

Chapter 6: Dataflow Models

Dataflow Models, UC Berkeley: 28

Simple Example: Spectrum Analysis

How do we keep the
non-time critical path
from interfering with
the time-critical path?

Time critical path

Not time
critical path

15

Dataflow Models, UC Berkeley: 29

A Solution with Threads

Time critical path

Create two threads:

• A has low priority

• B has high priority

Why?

Thread A

Thread B

• RMS does not apply because there
are dependencies.

• EDF with precedences applies and
is optimal w.r.t. feasibility, except for
how to assign deadlines.

• How to implement the
communication between threads?

Dataflow Models, UC Berkeley: 30

Abstracted Version of the Spectrum Example:
EDF scheduling

Suppose that C requires 8
data values from A to execute. Suppose further that C
takes much longer to execute than A or B. EDF schedule:

1 1

8

schedule

Precedence graph

16

Dataflow Models, UC Berkeley: 31

Dataflow Models

Buffered communication between concurrent components (actors).

Static scheduling: Assign to each thread a sequence of actor
invocations (firings) and repeat forever.

Dynamic scheduling: Each time dispatch() is called, determine
which actor can fire (or is firing) and choose one.

May need to implement interlocks in the buffers.

Actor A
FIFO buffer

Actor B

Dataflow Models, UC Berkeley: 32

Streams: The basis for Dataflow models

17

Dataflow Models, UC Berkeley: 33

Dataflow

Firing rules:
the number of
tokens
required to fire
an actor.

Dataflow Models, UC Berkeley: 34

Buffers for Dataflow

 Unbounded buffers require memory allocation and deallocation
schemes.

 Bounded size buffers can be realized as circular buffers or ring
buffers, in a statically allocated array.
 A read pointer r is an index into the array referring to the first empty

location. Increment this after each read.

 A fill count n is unsigned number telling us how many data items are
in the buffer.

 The next location to write to is (r + n) modulo buffer length.

 The buffer is empty if n == 0

 The buffer is full if n == buffer length

 Can implement n as a semaphore, providing mutual exclusion for
code that changes n or r.

18

Dataflow Models, UC Berkeley: 35

Synchronous Dataflow (SDF)

If the number of tokens consumed and produced by the
firing of an actor is constant, then static analysis can tell
us whether we can schedule the firings to get a useful
execution, and if so, then a finite representation of a
schedule for such an execution can be created.

Dataflow Models, UC Berkeley: 36

Balance Equations

Let qA, qB be the number of firings of actors A and B.
Let pC, cC be the number of tokens produced and
consumed on a connection C.
Then the system is in balance if for all connections C

qA pC = qB cC

where A produces tokens on C and B consumes them.

19

Dataflow Models, UC Berkeley: 37

Example

Consider this example, where actors and arcs are
numbered:

The balance equations imply that actor 3 must fire twice
as often as the other two actors.

Dataflow Models, UC Berkeley: 38

Compactly Representing the Balance Equations

102

120

011

3

2

1

q

q

q

q

0

0

0

0

q

Actor 1

Connector 1
balance equations

firing vector

production/consumption matrix

20

Dataflow Models, UC Berkeley: 39

Question on initial example …

What is the production/consumption matrix in this case?

1 1

8

Dataflow Models, UC Berkeley: 40

Question on initial example …

What is the production/consumption matrix in this case?

1 1

8

1

1

0

8

1

0

21

Dataflow Models, UC Berkeley: 41

Example

A solution to the balance equations:

2

1

1

q

102

120

011

0

q

This tells us that actor 3 must fire twice as often as actors 1 and 2.

Dataflow Models, UC Berkeley: 42

Example

But there are many solutions to the balance equations:

For “well-behaved” models, there is a unique least
positive integer solution.

2

1

1

q 0

q

0

0

0

q

4

2

2

q

2

1

1

q

2

q

22

Dataflow Models, UC Berkeley: 43

Least Positive Integer Solution to the Balance
Equations

Note that if pC, cC , the number of tokens produced and
consumed on a connection C, are non-negative integers,
then the balance equation,

qA pC = qB cC

implies:
 qA is rational if and only if qB is rational.
 qA is positive if and only if qB is positive.

Consequence: Within any connected component, if there
is any non-zero solution to the balance equations, then
there is a unique least positive integer solution.

Dataflow Models, UC Berkeley: 44

Consistent Models

An SDF model is consistent if there exists a non-zero
solution to the balance equations.

23

Dataflow Models, UC Berkeley: 45

Example of an Inconsistent Model:
No Non-Trivial Solution to the Balance Equations

There are no nontrivial solutions to the balance
equations.

Note that this model can execute forever, but it requires
unbounded memory.

102

110

011

Dataflow Models, UC Berkeley: 46

Structured Dataflow

LabVIEW uses homogeneous SDF augmented with
syntactically constrained forms of feedback and rate
changes:

 While loops

 Conditionals

 Sequences

LabVIEW models are decidable.

24

Dataflow Models, UC Berkeley: 47

Many other concurrent MoCs have been explored

 (Kahn) process networks

 Communicating sequential processes (rendezvous)

 Time-driven models

 More dataflow variants:
 cyclostatic

Heterochronous

…

 Petri nets

 …

Introduction to
Embedded Systems

Material for Further Reading

25

Dataflow Models, UC Berkeley: 49

Abstracted Version of the Spectrum Example:
Non-preemptive scheduling

Suppose that C requires 8 data values from A to execute.
Suppose further that C takes much longer to execute
than A or B. Then a schedule might look like this:

…

Assume infinitely repeated
invocations, triggered by
availability of data at A.

This suffers
from jitter.

1 1

8
Is this dataflow
model dynamic?
Is it homogeneous?

schedule Note that each period is EDF.

Dataflow Models, UC Berkeley: 50

Uniformly Timed Schedule

A preferable schedule would space invocations of
A and B uniformly in time, as in:

…

minimum latency

26

Dataflow Models, UC Berkeley: 51

Non-Concurrent Uniformly Timed Schedule

Notice that in this schedule, the rate at which A and B
can be invoked is limited by the execution time of C.

…

No jitter, but utilization is poor.

Dataflow Models, UC Berkeley: 52

Concurrent Uniformly Timed Schedule:
Preemptive schedule

With preemption, the rate at which A and B can be
invoked is limited only by total computation:

…

…preemptions

thread 1:

thread 2:

high priority

low priority

27

Dataflow Models, UC Berkeley: 53

Ignoring Initial Transients,
Abstract to Periodic Tasks

In steady-state, the execution follows a simple periodic
pattern:

…

…

thread 1:

thread 2:

sampleTime = 1 sampleTime = 1

sampleTime = 8

This follows the
principles of rate-
monotonic
scheduling (RMS).

Dataflow Models, UC Berkeley: 54

Requirement 1: Bounded Buffers

If the execution of C runs longer than expected, to keep
the buffer bounded, thread 1 must be delayed
accordingly. This can be accomplished with semaphore
synchronization. But there are alternatives:

 Throw an exception to indicate timing failure.

 “Anytime” computation: use incomplete results of C

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

28

Dataflow Models, UC Berkeley: 55

Requirement 2: Respect Data Dependence

If the execution of C runs shorter than expected, data
determinacy requires that thread 2 be delayed
accordingly. That is, it must not start the next execution
of C before the data is available.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

Dataflow Models, UC Berkeley: 62

In Dataflow, Interlocks and Built-in Buffering take
care of these dependencies

For dataflow, a one-time interlock ensures sufficient data
at the input of C for the first invocation:

…

…first-time interlock

thread 1:

thread 2:

high priority

low priority

periodic interlocks

29

Dataflow Models, UC Berkeley: 67

Dataflow: many variants

Dataflow Models, UC Berkeley: 71

Necessary and sufficient conditions

Consistency is a necessary condition to have a
(bounded-memory) infinite execution.

Is it sufficient?

30

Dataflow Models, UC Berkeley: 72

Deadlock 1

Is this diagram consistent?

A B

1 1

11

Dataflow Models, UC Berkeley: 73

Deadlock 2

Some dataflow models cannot execute forever. In the
above model, the feedback loop injects initial tokens, but
not enough for the model to execute.

31

Dataflow Models, UC Berkeley: 74

SDF: from static analysis to scheduling

Given: SDF diagram

Find: a bounded-buffer schedule, if it exists

Step 0: check whether diagram is consistent. If not, then
no bounded-buffer schedule exists.

Step 1: find an integer solution to q=0.

Step 2: “decompose” the solution q into a schedule,
making sure buffers never become negative.

Dataflow Models, UC Berkeley: 75

Step 2: “decomposing” the firing vector

Example 1:

2

1

1

q

0

0

0

b

Fire 1

2

1

0

q

2

0

1

b

Fire 2

2

0

0

q

2

2

0

b

Fire 3

1

0

0

q

1

1

0

b

Fire 3

0

0

0

q

0

0

0

b

Schedule = (1;2;3;3)

32

Dataflow Models, UC Berkeley: 76

Step 2: “decomposing” the firing vector

Example 2:

What happens if we try to run
the previous procedure
on this example?

A B

1 1

11

So, we have both necessary
and sufficient conditions for
scheduling SDF graphs.

Dataflow Models, UC Berkeley: 77

A Key Question: If More Than One Actor is
Fireable in Step 2, How do I Select One?

Optimization criteria that might be applied:

 Minimize buffer sizes.

 Minimize the number of actor activations.

 Minimize the size of the representation
of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software
Synthesis from Dataflow Graphs, Kluwer Academic Press, 1996.

Beyond our scope here, but hints that it’s an interesting problem…

33

Dataflow Models, UC Berkeley: 80

Dynamic Dataflow

Imperative
equivalent:

while (true) {
x = f1();
b = f7();
if (b) {

y = f3(x);
} else {

y = f4(x);
}
f6(y);

}

The if-then-else model is not SDF.
But we can clearly give a bounded
quasi-static schedule for it:
(1, 7, 2, b?3, !b?4, 5, 6)

What consumption rate?

What production rate?

guard

Dataflow Models, UC Berkeley: 82

Facts about (general) dynamic dataflow

 Whether there exists a schedule that does not
deadlock is undecidable.

 Whether there exists a schedule that executes forever
with bounded memory is undecidable.

Undecidable means that there is no algorithm that can
answer the question in finite time for all finite models.

