
1

Introduction to

Embedded Systems

Edward A. Lee & Sanjit A. Seshia
UC Berkeley

EECS 149

Spring 2010

Copyright © 2008-10, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 20: Time-Triggered Models

EECS 149, UC Berkeley: 2

Example: Time-Triggered Models with LET

t+10ms t+10ms t t t+5ms t+5ms

Higher frequency Task

Lower frequency task: In some time-

triggered models
(e.g. Giotto, TDL),

each actor has a
logical execution

time (LET). Its

actual execution
time always

appears to have
taken the time of

the LET.

2

EECS 149, UC Berkeley: 3

The LET (Logical Execution Time) Programming Model

Software Task

read sensor

input at time t

write actuator

output at time t+d,

for specified d

Examples: Giotto, TDL,

Slide from Tom Henzinger

EECS 149, UC Berkeley: 4

time t time t+d

real execution

on CPU buffer output

The LET (Logical Execution Time) Programming Model

Slide from Tom Henzinger

3

EECS 149, UC Berkeley: 5

50% CPU speedup

Portability

Slide from Tom Henzinger

EECS 149, UC Berkeley: 6

Task 2

 Task 1

Composability

Slide from Tom Henzinger

4

EECS 149, UC Berkeley: 7

Timing predictability: minimal jitter

Function predictability: no race conditions

Determinism

Slide from Tom Henzinger

EECS 149, UC Berkeley: 8

make output available

as soon as ready

Contrast LET with Standard Practice

Slide from Tom Henzinger

5

EECS 149, UC Berkeley: 9

data race

Contrast LET with Standard Practice

Slide from Tom Henzinger

EECS 149, UC Berkeley: 10

Recall: Simulink Strategy

Problem: in a naïve implementation, ZOH would copy the

entire buffer. Copying large amounts of data can take a

long time.

Solution: alternate buffers where A writes to, using clever

(and careful) pointer managing.

thread 1:

thread 2:

ZOH ZOH

sampleTime: 1

sampleTime: 8
RingBuffer

…

6

EECS 149, UC Berkeley: 11

The high-to-low-priority protocol [Caspi et al, 2008]

L keeps a double buffer: B[0,1]

Two (boolean) pointers: current, next

H writes to: B[next]

L reads from: B[current]

When L arrives: current := next

When H arrives: if (current = next) then

Initially: current=next=0, B[0]= B[1]= default

H L

next := not next

No copying of buffers. Works for arbitrary arrival patterns.

See Reading paper for details.

EECS 149, UC Berkeley: 12

Reading

P. Caspi, N. Scaife, C. Sofronis and S.Tripakis.

Semantics-Preserving Multitask Implementation of

Synchronous Programs. In ACM Trans. Embedded

Computing Systems. ACM, 2008.

