
 
  

Security Systems for Distributed Models in Ptolemy II 
 

Rakesh Reddy 
Carnegie Mellon University 
rnreddy@andrew.cmu.edu 

 
 

Abstract 
Ptolemy II is a powerful software package that models 
heterogeneous systems.  Its infrastructure offers the 
ability to create distributed models, but lacks the 
security mechanisms to protect data being transferred 
in these models.  The lack of security can lead to many 
potential threats and breaches of information.  Potential 
attackers can jeopardize system stability by 
manipulating data in transit or by transmitting harmful 
models.  Distributed models may also pass security 
sensitive data where outside parties should not be able 
to determine the information being passed. The current 
infrastructure however has no means to keep such 
information secure from eavesdropping.  Eliminating 
these security threats requires the implementation of 
various cryptographic services including ciphers and 
digital signatures. The Sun Java Cryptography 
Architecture and Java Cryptography Extension 
packages provide the tools needed in eliminating these 
breaches of security.  The semantics used by the above-
mentioned Java packages allow for the creation of 
actors in which a diverse number of algorithms can be 
used with minimal knowledge of cryptography. By 
creating Ptolemy II actors that implement cryptographic 
services, we achieve a flexible yet, powerful defense of 
potential security leaks in distributed models.  The 
result is being able to send and receive data Ptolemy II 
distributed models without the concern of information 
leaks or receiving adverse applications. 
 
 
1. Introduction 
 

As technology grows so does the complexity of 
problems we seek to solve.  The complexity of these 
solutions often calls for the use of computers.  However, 
even with the development of faster machines, more and 
more problems arise in which it becomes impractical for 
a single computer to complete the necessary task.  The 
logical solution is to use more than one system.  The 
result of this idea is distributed models.   

Distributed computing, a form of distributed 
modeling, relies on the fact that multiple systems can 
process information much quicker than a single system.  

This is an excellent mechanism for solving 
computationally intensive problems that require large 
amounts of data to be processed.  These models involve 
sending chunks of data to multiple systems in order to 
solve the given problem.  A wide spread example of 
distributed computing is the Search for Extraterrestrial 
Intelligence at home (SETI@home).  The basis of this 
project is to analyze data from space to determine if 
intelligent life exists outside of earth.  The SETI@home 
software sends small pieces of data to be analyzed by 
home systems while they are not being used.  The 
results of the analysis are then sent back to the 
SETI@home server.  The use of distributed computing 
allows for significant amounts of data to be processed 
that would otherwise be impractical.  The processing of 
information at this distributed level has led to many 
more data intensive applications, including the analysis 
of protein folding and determining the security of 
cryptographic algorithms. 

In addition, distributed models are not limited to 
computing vast amounts of data.  Several control 
applications exist where it is physically impossible to 
control a system with only one computer, creating a 
need for distributed control models.  One such scenario 
is the Partners for Advanced Transit and Highways 
(PATH) project.  Part of the project is to allow cars to 
communicate with each other in order to avoid 
collisions or improve the flow of traffic.  It is physically 
impossible for a single computer system to do this for 
several reasons, most notably that a single system would 
have to tell millions of cars how to operate.  The 
difficulty in communicating with so many cars 
simultaneously in itself is a seemingly insurmountable 
task using one computer.  The answer lies in cars 
wirelessly transmitting information to each other and 
independently processing information to detect potential 
accidents rather than relying on a single system. 

Although distributed computing is an excellent 
solution to the aforementioned problems, the issue of 
security must be addressed.  With the large amount of 
information being passed around, many potential threats 
could jeopardize distributed systems in a variety of 
ways.  Information can be transmitted by a malicious 
source that is potentially harmful to components of a 
distributed control system.  For example someone could 



use the PATH system to cause cars to crash.  The lack 
of security would also make it simple to intercept data 
that is security sensitive. 
 
2. Background Information 
 
2.1. Ptolemy II 

Ptolemy II is a Java based software package that is 
used to model heterogeneous systems using models of 
computation known as actors.  The infrastructure of 
Ptolemy II allows for the distributed modeling of 
systems including distributed data processing and 
distributed controls. A key feature of distributed 
modeling within Ptolemy II is the use of mobile models.  
Mobile models are models that can be passed through 
distributed computing to perform operations as specified 
by the model.  Mobile models go beyond the simple 
transmission of data that many distributed models are 
limited to by adding functionality to already existing 
models on a system.  These models alter how the main 
model operates during runtime.  This capability vastly 
expands the functionality of distributed computing that 
could not be achieved with the infrastructure of standard 
distributed systems. 

The added functionality arising from mobile models 
also creates more security threats.  Ptolemy II’s security 
mechanism is lacking.  The only form of security that 
exists is the Java Sandbox.  It is a part of the Java 
Virtual Machine (JVM) that protects system from 
potential attack by the applications it runs.  There are 
many limitations to the sandbox.  JVM classes are 
placed in a dichotomy of either being trusted or not 
trusted.  There is no form of limited trust where an 
application could access certain data on a system or 
write some information to the system.  Furthermore if 
any part of an application is not trusted then the whole 
application can not be run.  This dichotomy renders a 
result that either sacrifices system security or hinders 
the functionality of a distributed system.  The sandbox 
provides no mechanism to protect data being 
transported either.  The solution to the security dilemma 
is to implement various cryptographic services that 
ensure the protection of information and the ability to 
trust such information.   
 
2.2 Ciphers 
 

Ciphers are mechanisms used to encrypt or decrypt 
data.  Ciphers are based on a key in conjunction with an 
algorithm that is used to transform data.  Keys are 
pieces of data that are required to perform a cipher 
operation (decryption or encryption) on a piece of data.  
The purpose of a cipher is to encrypt a message so it is 
kept secret from anyone who does not have the 

necessary key.  The original data transformed by the key 
can be transformed back by using a key.  The key used 
depends on whether the cipher is symmetric and 
asymmetric. 
 
2.2.1. Symmetric Cipher. Symmetric cryptography, 
also known as “secret key” or “private key” 
cryptography, is based on keeping the knowledge of the 
key private.  A simple example would be shifting every 
letter by 3 and wrapping the last letters around.  In this 
case the key would be 3 and would need to be kept 
secret.  With the current computational power, some 
symmetric ciphers can be broken in a brute force 
manner using heuristics and other information such as 
the tendency for certain character to repeat.  This has 
led to the development of more complex algorithms that 
computationally impractical to decode at this time. 
 

 
Figure 1: Symmetric Cipher process [4]. 

 
There are several other important features that 

become when using symmetric algorithms.  Encrypting 
data in chunks as opposed to single characters makes it 
much more difficult to decrypt the data.  Algorithms 
that offer sufficient security use block ciphering.  Block 
ciphering requires two more components: padding and 
mode.  The padding scheme determines what data will 
be used to fill in a partially filled block during 
encryption.  The mode determines how the cipher 
should be applied.  One type of mode is the Electronic 
Code Book which is similar to a replacement scheme.  
Another scheme is Cipher Block Chaining which uses 
the prior block to encrypt the next block. 

The main weakness of symmetric cryptography lies 
in transporting the key since sending it with the message 
would allow anyone to decrypt it.  Another threat to 
symmetric cryptography, as mentioned before, is a brute 
force attack which takes data and tries to manipulate it 
to get the original data. 
 
2.2.2. Asymmetric. Unlike symmetric ciphers, 
asymmetric ciphers use key pairs.  These key pairs 
comprise of a public key and a private key.  The public 
key can be publicly known while only one person 
knows the corresponding private key.  The message is 
encrypted using a public key and is sent to the person 



with the corresponding private key.  The private key is 
then used to decrypt the message.  This is made possible 
by the fact that if, a message is encrypted using one key, 
it can only be decrypted with the other key of the pair.  
This key system eliminates the issues of needing to keep 
a key secret during transfer. 
 

 
Figure 2: Asymmetric Cipher process [4]. 

 
The ease of transporting keys for asymmetric ciphers 

would lead one to believe that symmetric algorithms 
would be unnecessary.  There are several reasons as to 
why this is not true.  The main issue is asymmetric 
algorithms are computationally demanding compared to 
symmetric algorithms.  Using asymmetric algorithms to 
encrypt large amount of data can be up to a thousand 
times slower than using symmetric algorithms [4].  
Asymmetric ciphers can also suffer from man-in-the-
middle attacks in which the key is tampered with.  
Another issue that becomes important with asymmetric 
ciphers is the random number generator used to make 
keys.  This becomes a difficult task since randomness is 
something that eludes the mechanics of computers.  
Using weak PRNG (pseudo random number generators) 
provides an easier method to determine the keys in 
algorithms such RSA. 
 
2.2.3. Hybrid Cryptography. In response to the 
drawbacks of symmetric and asymmetric ciphers, it is 
essential to combine the two.  This is known as hybrid 
cryptography.  Hybrid cryptography is achieved by 
encrypting a file using a symmetric cipher.  The private 
key of the symmetric cipher is then encrypted using an 
asymmetric algorithm; this model addresses the main 
weaknesses of each cipher.  In the case of symmetric 
ciphers, the issue of transferring the private key is 
eliminated for the key is encrypted using a public key 
cipher in which the public key can be known.  The 
problem of asymmetric ciphers being slow for 
encryption is eliminated by merely encrypting the secret 

key.

 
Figure 3: Hybrid Encryption process [4]. 

 
2.3. Message Digests  

 
Message Digests are a method to determine that a 

message was not altered while in transit.  The basis of a 
message digest is a hash function that has several key 
properties.  The input length can be of any length while 
the output is some fixed length.  The hash function 
should also be one way meaning that the original 
message can not be determined from the message hash.  
The hash function in message digests should also be 
collision free.  Given a message x with a hash, H(x), it 
should be computationally infeasible to find a message 
y where H(y) = H(x).  If this weren’t true then one could 
easily modify a message and manipulate it so the same 
hash result is produced.  This would make the point of a 
message digest useless. 

One of the more recent message digests algorithms 
that is in wide use is the Secure Hash Algorithm (SHA); 
MD5 is another common hash that is widely used.  SHA 
is slightly slower but more secure because its 160-bit 
output compared to MD5’s 128-bit output makes it 
more secure from finding collisions and determining the 
original function.  This is not to say that MD5 is 
insecure for Van Oorshcot and Wiener designed a brute 
force computer to find collisions in MD5.  It took an 
average of twenty four days to find a collision [2].  
Message Authentication Codes are message digest that 
use a key to encrypt the message providing a little more 
security. 

Message digests in themselves offer no security.  
However, they are often used to verify that a message 
was not tampered with and are a key component in 
digital security. 

 
2.4. Digital Signatures  
 

Digital signatures are used to verify that information 
being received is from a specific person.  The purpose 
of a digital signature is the same as a normal signature 



in its purpose in authenticating whom the sender is.  
Digital signatures are based on calculating the message 
digest of a certain piece of data and encrypting it using 
the private key of an asymmetric algorithm.  The 
encrypted message digest, public key, and the original 
message - encrypted or clear - are then sent to the 
receiving party.  The receiving party then takes the 
public key and decrypts the hash.  The hash for the 
message is then calculated and then compared to the 
hash that has been decrypted.  If the hashes are equal 
then the message verification is successful; otherwise 
signature authentication has failed. 

 

 
Figure 4: Digital signature process [4]. 

 
There are several reasons that the verification could 

have failed.  It is possible that there was an error in the 
transmission so information wouldn’t match.  A greater 
threat to security is the message was intentionally 
altered by a middle man.  In this case, the information in 
the message should be rejected since the information is 
not from the intended sender. 

 

 
Figure 5: Digital signature verification [4]. 

 
Another issue that may arise is that someone could 

pretend to be an authorized sender by signing 
documents with their own key pair.  This situation can 
be avoided by using certificates.  Certificates contain 
information that verifies who a sender is.  It is usually 
necessary to have a certificate authority, which is a 
trusted third party that issues certificates to those 
authorized to have them.  Certificates created from a 

central authority make it much more difficult for 
someone to falsify someone else’s identity. 
 
2.5. JCE & JCA. 
 

The Java Cryptography Architecture (JCA) and Java 
Cryptography Extension (JCE) are Sun’s solution to 
being able to easily implement cryptographic services.  
Services provided by the two packages include 
Signatures, Ciphers, Message Digests, Message 
Authentication Codes, Key generators and more.  The 
main convenience of the JCE and JCA are the ability to 
implement cryptographic services with minimal 
knowledge of how algorithms work.  Most 
cryptographic algorithms are mathematically intensive 
and would be very time consuming to implement.  The 
JCE and JCA take care of the underlying semantics 
making it easier to use cryptographic services.  A key 
attribute to the cryptography architecture is the ability to 
use algorithms created by third-parties known as 
“providers.”  Providers follow specific guidelines set in 
the JCA and JCE that allow users to use algorithms with 
the same syntax regardless of the provider.  Also, as 
new algorithms are developed, the user does not have to 
create or learn new code to implement the algorithm.  
For example, the standard Sun provider that comes 
built-in has very few services.  The lack of services is 
easily solved by downloading a third-party, JCE 
compliant package that uses the same syntax as the Sun 
provider. 
 
3. Implementation 

 
Several actors were created in order to implement the 

various cryptographic services.   A common feature 
between all the actors is that all information is passed as 
a byte array.  The motivation for this is the cipher and 
signature classes act on byte arrays.  For example, to 
allow for hybrid encryption it is necessary for the Key 
object to be in a byte array.  Also, when reading in files, 
information must be read in as buffer of bytes and not 
String lines.  The reason for this is it is possible end line 
characters to be output during encryption.  This has no 
significance when reading from a byte buffer for 
decryption.  However, if it were being read in as a 
String for decryption the end line character would be 
ignored because end line characters delineate separate 
Strings.  Therefore data being decrypted is not the same 
as the original data, resulting in an unsuccessful 
decryption. 

 
3.1. AsymmetricEncryption/Decrytption Actors 
 



These actors implement asymmetric cipher 
algorithms following the JCE specifications that exist on 
the system.  The user may specify the algorithm, 
provider, key size, mode and padding to be used.  The 
AsymmetricDecryption actor is responsible for creating 
the public/private keys.  The public key is then 
distributed to AsymmetricEncryption actors that encrypt 
the data to be sent.  This data is sent to the 
AsymmetricDecryption actor that it received the public 
key from and is decrypted.   

 
3.2. SymmetricEncryption/Decrytption Actors 

 
These actors implement symmetric cipher algorithms 

following the JCE specifications that exist on the 
system. A user may specify the algorithm, provider, key 
size, mode and padding to be used.  The 
SymmetricEncryption actor is responsible for creating 
the secret key.  The SymmetricEncryption actor then 
encrypts the data using the secret key and sends the data 
and key to a SymmetricDecryption actor.  The 
SymmetricDecryption actor receives the data and secret 
key and decrypts the message with the key.  In certain 
instances, such as Cipher Block Chaining mode, 
information about the parameters used for encryption 
need to be sent.  These parameters can be sent publicly 
without jeopardizing the security of a file. 

 
3.3. SignatureSigner/Verifier Actors 
 

These actors implement signature algorithms 
following the JCE specifications that exist on the 
system.  These actors allow you to specify the algorithm 
and provider.  The SignatureSigner actor takes the data 
and calculates the message digest for it.  This digest is 
then encrypted using a private key created in the 
SignatureSigner actor.  The encrypted message digest, 
original message and public key are then sent to a 
SignatureVerification actor.  The SignatureVerification 
actor decrypts the encrypted message digest using the 
public key that it received.  It calculates the message 
digest of the message received and compares the two 
digests.  If the two digests are the same then the original 
message is sent out.  If the digests are different, there 
was an error sending data or the original message was 
modified after it was signed and a message stating that 
the signature failed is displayed. 

 
3.4. Bouncy Castle Cryptography Actors 
 

These actors are an extension of the actors mentioned 
above that use the Bouncy Castle provider.  The Bouncy 
Castle provider was chosen because it is freely 
distributed and contains a wide variety of algorithms.  
The purpose of this set of actors is the ability to use the 

cryptography services without needing to look at the 
provider specifications to determine information like 
what algorithms are padding schemes exist for the 
provider.  Also, naming conventions for the same vary 
by provider.  This set of actors removes this burden 
from the user promoting the use of cryptographic 
services. 

 
3.5. Base Classes 
 

Several base classes were created to take advantage 
of the inheritance properties of Java and to avoid 
writing redundant code.  The main class for all actors is 
the CrypographyActor class.  This class contains several 
helper classes to convert data types and partially 
addresses the retrieval of parameters and processing of 
data.  Many of the declarations for the ports and 
parameters are made here.  The SignatureActor and 
CipherActor implement more things that are shared by 
the respective base classes. 

 
4. Conclusion 
 

Implementing cryptographic actors allows for 
distributed models to be securely created in Ptolemy II.  
This gives Ptolemy II the features needed to safely 
implement distributed control systems and distributed 
computing systems.  For example in the PATH project 
without secure modeling, computers could be tricked 
into crashing into each other if an unauthorized agent 
sent them the transmission.  With security guards in 
place, such a transmission would be checked to see if it 
is an authorized sender to make sure it is not such an 
attack.  The main plan in the future is to implement a 
certificate system for modeling purposes.  This would 
make signature signing and verification much more 
secure.  However, this can only be a model since the 
actual implementation would require the certificate 
authority to be a third-party entity. 
 
5. Acknowledgments 
 

First and most importantly I would like to thank my 
parents for they were the ones that brought me to this 
world and always supported me everything I’ve done. I 
would also like to thank Professor Edward Lee for 
giving me the opportunity to work on this project; all 
the graduate mentors who always willing to take time 
out of their busy schedules to help; the CHESS and 
SUPEB staff; Riya from Blake’s on Telegraph; and 
Lindsay who did the final editing of this paper.  And last 
but surely not least, the Terrible Terry Tate (aka TTT), 
office line backer.  
 



 6. References 
 
[1] 
http://java.sun.com/j2se/1.4.1/docs/guide/security/Crypt
oSpec.html 
[2] http://rsasecurity.com 
[3] 
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JC
ERefGuide.html 
[4] http://www.cs.ttu.edu/~cs5331/ns/modules/ 
 


