DEVELOPING FAITHFUL MODELS OF BODY SENSOR NETWORKS

Philip Asare, John Lach, John A. Stankovic

Ptolemy Mini-Conference Nov 7, 2013
Body Sensor Networks

- Enabling
 - Medical research
 - Improved clinical practice
 - Other (non-medical) applications
Body Sensor Networks

On-Body Node:
- Sensing
- [Pre-Processing]
- [Inference]
- [Storage]

On-Body ‘Aggregator’:
- Data Fusion
- [Sensing]
- [Inference]
- [Storage]

‘Back-end’:
- Data Fusion
- Visualization
- Inference
- Storage
What Designers Would Like To Know?

- Efficacy of implementation (Information Dependability)
 - Sensing
 - Processing algorithms
 - Robustness strategies

- Efficiency (related to efficacy)
 - Speed
 - Energy consumption
 - Required real-estate (form factor)

- Safety
What is Expected of Designers?

- **Efficacy of implementation (Information Dependability)**
 - Sensing
 - Processing algorithms
 - Robustness strategies

- **Efficiency (related to efficacy)**
 - Speed
 - Energy consumption
 - Required real-estate (form factor)

- **Safety (related to efficacy)**
Overview

- Introduction
 - Body Sensor Networks
 - Designer and design expectations
- Reasoning about BSNs (our meta models)
- Faithfully Capturing BSNs
 - Issues
 - How Ptolemy (and its ideas) can help
Reasoning about BSNs: Our Meta Models

- Work with the FDA*

 - How BSN is attached to patient
 - Output from human process to BSN
 - BSN (sensing process)
 - Info from medical system to BSN
 - Patient and environment (human process)
 - Output from BSN to human process
 - Info from BSN to medical system
 - Rest of medical system (inference process)

Safety notion:

Given

reasonable expectations of behaviors and responses of H and I

Does S (relative to some established/accepted ideal)

produce Y that is reflective of dynamics of interest of H?

interact with H safely through Y?

comparison
‘function’

ideal scenario

‘real’ scenario

output interface

output property

safety bound

\leq
Reasoning about BSNs: Our Meta Models

- Digging deeper

Diagram showing the components of BSNs:
- **Sensing sub-process**: Elements of S coupled to human process
- **Processing element**: Transducer, Energy source, 'Actuator'
- **Computational environment**: Sensing sub-process

Diagram illustrates the flow of information and interactions between sensing, processing, and computational environments.
Modeling Goals

- Single model that
 - Faithfully captures components and interactions identified in meta model
 - Allows tracking of hazards and why they occur
 - Checking when safety constraints aren’t met
 - Relating this to efficacy of design
How to Capture this Concretely and Faithfully in a Simulation?

- Issues
 - Heterogeneous components
 - Mixed ‘domains’ (continuous, discrete)
 - Heterogeneous models of computation
 - Timed system issues! (Real/wall-clock-time, platform time, logical time, local)
 - Lots of related dynamics!

- Good news
 - Ptolemy (and its ideas) to the rescue!
How to Capture this Concretely and Faithfully in a Simulation?

- **Separation of Concerns (Human Dynamics)**
 - Physiologic variables are usually continuous
 - Location variable is discrete
 - Human process may produce discrete events for BSN
 - Human process may have different ‘modes’
 - Inputs from BSN may be both continuous and discrete

- **Useful Ptolemy Concepts**
 - Ptera
 - Hybrid Systems
 - DE and Continuous Domains
How to Capture this Concretely and Faithfully in a Simulation?

- **Separation of Concerns (BSN)**
 - BSN must only ‘see’ outputs from human process
 - Inputs from human process both noisy ‘desired’ input and modifying inputs
 - Inputs from medical system discrete signal
 - BSN-to-human interface produces continuous (with possibly discrete) signals
 - Other parts of BSN mostly ‘digital’/cyber
 - BSN output to medical system is discrete signal

- **Useful Ptolemy ideas:**
 - DE domain vs. continuous domain
 - Ptides (for platform vs. function issues)
 - Mixed MoCs (Modal, Timed Dataflow, Ptera)
How to Capture this Concretely and Faithfully in a Simulation?

- **Wireless Communication Channels**
 - Must capture broadcast nature of channels
 - Must capture individual link characteristics
 - Must account for on-body environment

- **Useful Ptolemy ideas:**
 - Wireless domain ideas (must be extended)
 - Aspects
How to Capture this Concretely and Faithfully in a Simulation?

- **Wireless Communication Channel**

- Opportunities for co-simulation (Ptolemy + BodySim)!
How to Capture this Concretely and Faithfully in a Simulation?

- **Resource Usage**
 - Energy (mobile components)
 - Communication bandwidth

- **Useful Ptolemy ideas:**
 - Constraints
 - Aspects (model platform differences)
 - Parameterized models
How to Capture this Concretely and Faithfully in a Simulation?

- **Timing**
 - Oracle time (wall-clock/real-time)
 - Platform time
 - Logical time (specifications)

- Useful Ptolemy ideas:
 - Ptides modeling
 - Aspects
Conclusions and Future Directions

- **Takeaways**
 - BSNs require heterogeneous modeling to design properly
 - Ptolemy (possibly with some co-simulation) can help
 - A single model leveraging many of Ptolemy’s capabilities seems feasible

- **Future directions**
 - Model a particular BSN (start with single sensor, then networks of sensors)

- Would welcome help ironing out subtleties in some models
QUESTIONS and FEEDBACK