Attack Modeling in Ptolemy: Towards a Secure Design for Cyber-Physical Systems

Armin Wasicek
UC Berkeley
10th Biennial Ptolemy Miniconference
Critical Infrastructure Protection

- Cyber-physical systems
- Real-time systems
- Critical Infrastructure
- Dependability

11/07/13
Armin Wasicek
Why Security Fails in CPS

• Security is no or a minimal concern in CPS
 – Systems operated in isolation
 – No trained engineers

• Common sources of vulnerabilities:
 – No appropriate security mechanisms
 – Misconfiguration of security mechanisms
 – Security is implemented as ‘add-on’

► Engineering approach to secure CPS
Security Engineering

GOAL: Establish security properties in a system

• E.g., Top-down approach:
 • Threat / Attack Model ➔ Understand
 • Security Policy ➔ Design
 • Security Mechanism ➔ Implement
 • Security Assessment ➔ Review

► Defines a structured way of working
Apply models to improve software engineering

• Provides a common design environment
• Enables early location and correction of faults
• Promotes design reuse

► “No total, but reasonable automation“
Attack Modeling

An adversary is usually described by its

- Capabilities
- Behaviors

- Identifies weaknesses
- Enables search for mitigations
- Promotes understanding of attack vectors
Textual Attack Models

- CERT Security Incident Taxonomy

1. Attackers
 - Hackers
 - Spies
 - Terrorists
 - Corporate Raiders
 - Professional Criminals
 - Vandals
 - Voyeurs

2. Tool
 - Physical Attack
 - Information Exchange
 - User command
 - Script or program
 - Autonomous agent
 - Toolkit
 - Distributed tool
 - Data tap

3. Vulnerability
 - Design
 - Implementation
 - Configuration

4. Action
 - Probe
 - Scan
 - Flood
 - Authenticate
 - Bypass
 - Spoof
 - Read
 - Copy
 - Steal
 - Modify
 - Delete

5. Target
 - Account
 - Process
 - Data
 - Component
 - Computer
 - Network
 - Internetwork

6. Unauthorized Result
 - Increased access
 - Disclosure of information
 - Corruption of information
 - Denial of service
 - Theft of resources

7. Objectives
 - Challenge, status, thrill
 - Political gain
 - Financial gain
 - Damage

Graph-based Attack Models

- Attack Trees describe paths to a target

Formal Attack Models

• Measurements as input for control system $y_i(k) \in \mathcal{Y}_i$... sensor values y_i at time k

• Received measurements \tilde{y}_i, potentially tampered by a_i during attack interval $k \in \mathcal{K}_a$

$$\tilde{y}_i(k) = \begin{cases} y_i(k) & \text{for } k \notin \mathcal{K}_a, \\ a_i(k) & \text{for } k \in \mathcal{K}_a, a_i(k) \in \mathcal{Y}_i \end{cases}$$

Attack Modeling in Ptolemy

Goals:
- Enable a design space exploration
- Help system designers to understand threats
- Educate

Means:
- Aspect-oriented modeling to reason about systems and attacks
- Enables separation of concerns
Case Study: Inverted Pendulum

Insert Attack Model via a CommunicationAspect
Case Study: Inverted Pendulum

Insert Attack Model via a CommunicationAspect

► Heterogeneous MoC enables any attack model
Plant under normal operation
Plant under manipulation attack
Exploring the Design Space

• **Fault tolerance** mediates between safe and unsafe states in a system
 – Sharp boundary

• **Security is more subtle:**
 – Differentiation of secure and insecure is hard
Conclusion

• Aspect-oriented modeling used to reason about systems and attacks

• Weaving domain models enables separation of concerns between functionality and security

• Heterogeneous MoC enable the composition of virtually any attack with any system model
Thanks for your attention!