Leveraging Synchronized Clocks in Distributed Applications

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Swarm Lab Retreat

January 14, 2014.
Berkeley, CA
A Major Emerging Opportunity: Clock Synchronization

Clock synchronization is going to change the world (again)

Gregorian Calendar (BBC history)

Musée d’Orsay clock (Wikimedia Commons)

2005: first IEEE 1588 plugfest

1500s days

1800s seconds

2000s nanoseconds
Global Positioning System

Provides ~100ns accuracy to devices with outdoor access.

Images: Wikimedia Commons
Precision Time Protocols (PTP)
IEEE 1588 on Ethernet

Press Release October 1, 2007

It is becoming routine for physical network interfaces (PHY) to provide hardware support for PTPs.

With this first generation PHY, clocks on a LAN agree on the current time of day to within 8ns, far more precise than GPS older techniques like NTP.
An Extreme Example: The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers 10 km apart to within about 80 psec using a combination of GPS, IEEE 1588 PTP and synchronous ethernet.
How PTP Synchronization works

If link is symmetric:
Offset =
\[t_{slave} - t_{master} = \frac{[(t_2 - t_1) - (t_4 - t_3)]}{2} = \frac{[t_{ms} - t_{sm}]}{2} \]

Propagation time =
\[[(t_2 - t_1) + (t_4 - t_3)]/2 = \frac{[t_{ms} + t_{sm}]}{2} \]

Source: John Eidson

Lee, Berkeley
Clock Synchronization Enables:

- Energy efficiency
- Coordination, even without communication
- Security
- Resource management
- Determinism

…but I will skip this story in the interest of time…
Ptides: Programming Temporally Integrated Distributed Embedded Systems

First step: Time-stamped messages.

Actors specify computation

Messages carry time stamps that define their interleaving
Ptides: Second step: Network clock synchronization

GPS, NTP, IEEE 1588, OpenWSN, time-triggered busses, … they all work. We just need to bound the clock synchronization error.

Assume bounded clock error e

Clock synchronization gives global meaning to time stamps

Messages are processed in time-stamp order
Ptides: Third step: Bind time stamps to real time at sensors and actuators

- Actors wrap sensors
- Time stamp value is time of measurement
- Time stamp value is a deadline
- Actors wrap actuators
Global latencies between sensors and actuators become controllable, which enables analysis of system dynamics.

Ptides: Fourth step: Specify latencies in the model

Model includes manipulations of time stamps, which control latencies between sensors and actors

Actuators may be designed to interpret input time stamps as the time at which to take action.

Feedback through the physical world
Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that events are processed in time-stamp order, given some assumptions.

Assume bounded sensor delay s

Assume bounded network delay d

Assume bounded clock error e

An earliest event with time stamp t here can be safely merged when real time exceeds $t + s + d + e - d^2$

Technical: Need to have deadlines on network interfaces, to guarantee time-stamp order irrespective of execution times of actors.

Application specification of latency d_2
So Many Assumptions?

All of the assumptions are achievable with today’s technology, and in fact are requirements anyway for hard-real-time systems.

The Ptides model makes the assumptions explicit.

Violations of the assumptions are detectable as out-of-order events and can be treated as faults.
Faults and Deadline Misses

Faults occur if:
- Network latency exceeds expectations
- Clock synchronization error exceeds bound
- Sensor latency exceeds bound

Faults manifest as out-of-order time stamps.

Deadline misses occur if:
- Execution time exceeds expectations

Deadline misses are detected at actuators and network interfaces. They are not necessarily faults!

Events cannot be processed according to DE semantics. Possible reactions:
- Backtracking (transactions)
- Switch to degraded mode
- Drop events
- Reboot

Events have been processed according to DE semantics. Reactions:
- Warning
- Degraded mode
- Drop action
Ptides Schedulability Analysis
Determine whether deadlines can be met

The problem turns out to be decidable for a large class of models.

On the Schedulability of Real-Time Discrete-Event Systems
Eleftherios Matsikoudis Christos Stergiou Edward A. Lee
EMSOFT 2013
Google independently developed a very similar technique and applied it to distributed databases.

Spanner: Google’s Globally-Distributed Database

Abstract

Spanner is Google’s scalable, multi-version, globally-distributed, and synchronously-replicated database. It is the first system to distribute data at global scale and support externally-consistent distributed transactions. This paper describes how Spanner is structured, its feature set, the rationale underlying various design decisions, and a novel time API that exposes clock uncertainty. This API and its implementation are critical to supporting external consistency and a variety of powerful features: non-blocking reads in the past, lock-free read-only transactions, and atomic schema changes, across all of Spanner. Reliability over higher availability, as long as they can survive 1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter replicated data, but we have also spent a great deal of time in designing and implementing important database features on top of our distributed-systems infrastructure. Even though many projects happily use Bigtable [9], we have also consistently received complaints from users that Bigtable can be difficult to use for some kinds of applications: those that have complex, evolving schemas, or those that want strong consistency in the presence of wide-area replication. (Similar claims have been made by other authors [37].) Many applications at Google...
Ptides is a Change in Philosophy

The implementation platform affects timing in a distributed real-time system.

Conventional approach: Specify functionality, implementation architecture, and mapping. Timing emerges from the combination.

Ptides approach: Specify temporal behavior. Then verify that it is met by a candidate implementation architecture.
Ptides offers a deterministic model of computation for distributed real-time systems.
What is the Value of Models?

You will never strike oil by drilling through the map!

Solomon Wolf Golomb on Modeling
But this does not, in any way, diminish the value of a map!
Determinate Models

Physical System

Model

Synchronous digital logic

Image: Wikimedia Commons
Determinate Models

Physical System

Model

```java
/** Reset the output receivers, which are the inside receivers of the output ports of the container. */
* @exception IllegalActionException If getting the receivers fails.
* */
public void _resetOutputReceivers() throws IllegalActionException {
  List<IOPort> outputs = ((Actor) getContainer()).outputPortList();
  for (IOPort output : outputs) {
    if (!._debugging) {
      _debug("Resetting inside receivers of output port: "
               + output.getName());
    }
    Receiver[][] receivers = output.getInsideReceivers();
    if (receivers != null) {
      for (int i = 0; i < receivers.length; i++) {
        if (receivers[i] != null) {
          for (int j = 0; j < receivers[i].length; j++) {
            if (receivers[i][j] instanceof FSMReceiver) {
              receivers[i][j].reset();
            }
          }
        }
      }
    }
  }
}
```
Module Timer:
input R, SEC;
output L, S;
Loop
 weak abort
 await 3 SEC;
 [sustain S
 || await 5 SEC;
 sustain L
]
 when R;
end
end module

Synchronous language programs

Lee, Berkeley
Determinate Models

Physical System

Model

\[\dot{x}(t) = \dot{x}(0) + \frac{1}{M} \int_{0}^{t} F(\tau) \, d\tau \]

Differential Equations

Image: Wikimedia Commons
A Major Problem Today: Cyber-Physical Combinations are Nondeterminate

Lee, Berkeley
Ptides offers a *deterministic* model of computation for distributed real-time systems.

http://chess.eecs.berkeley.edu/ptides
Acknowledgements

- Patricia Derler
- John Eidson
- Slobodan Matic
- Christos Stergiou
- Yang Zhao
- Jia Zou

Plus: The entire Ptolemy II Pteam