Embedded Systems Education: Vanderbilt

Edited and Presented by
Janos Sztipanovits
ISIS, Vanderbilt University

Chess Review
October 4, 2006
Alexandria, VA
Vanderbilt Engineering School

• Mid-size engineering program (# faculty < 100, ~1200 undergraduate and ~400 graduate students)

• Feasible strategy must build on research strength and effective resource utilization:
 - Large research program in model-based design, tools and networked embedded systems.
 - Strong collaboration with other Universities (UC Berkeley, U. Memphis, CMU, Cornell, GMU, Princeton, Stanford and others).
 - Extensive industry research collaboration (Boeing, GM, Raytheon, BAE Systems, LMCO and others).
Undergraduate Program Development

- Stakeholders: EE, CompE, CS and ME Programs
- Constraints and opportunities in curriculum development:
 - Insertion of only a limited number of new core courses
 - Faculty interest in adjusting content of existing courses
 - Developing new emphasis areas in curriculum is relatively easy
Undergraduate Curriculum Structure

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Sophomore</th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 116 Digital Logic</td>
<td>EECE 218 Micro-controllers</td>
<td>EECE 276 Embedded Systems</td>
<td>EECE 297 Senior Design</td>
</tr>
<tr>
<td>CS 201 Program Design</td>
<td>CS 231 Computer Organization</td>
<td>EECE 256 Digital Sig. Processing</td>
<td>EECE 258 Control Systems II</td>
</tr>
<tr>
<td>EECE 112 EE Science</td>
<td>EECE 274 Modeling and Simulation</td>
<td>EECE 257 Control Systems I</td>
<td></td>
</tr>
<tr>
<td>EECE 256 Digital Sig. Processing</td>
<td>EECE 277 FPGA Design</td>
<td>EECE 256 Digital Sig. Processing</td>
<td></td>
</tr>
<tr>
<td>EECE 258 Operating Systems</td>
<td>CS 201 Program Design</td>
<td>EECE 274 Modeling and Simulation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motivating example: Simple robot</th>
<th>Basic abstractions and their relationship:</th>
<th>Design of heterogeneous systems:</th>
<th>Integrated design experience:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering systems are heterogeneous</td>
<td>- Time in continuous and discrete systems</td>
<td>- Model-based design</td>
<td>- Design process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Design space and optimization</td>
<td>- System integration</td>
</tr>
</tbody>
</table>

Oct. 4, 2006; Chess Review
EECE 276: Embedded Systems

- Focus on: Embedded System Design

- Topic highlights:
 - Real-time Programming Models
 - Model-based Design
 - Processes, dataflow, finite-state machines
 - Real-time languages
 - Analysis techniques
 - Embedded project
 - Hardware + Software
 - 16bit microcontroller
 - Microkernel RTOS (uCOS-II)
"...I probably wouldn't be working at my current job if it wasn't for getting to participate in the program, since my current job deals with a lot of the technology ideas that we worked with in the SIPHER program.”
- Miguel Taveras, SIPHER 2004

<table>
<thead>
<tr>
<th>Year</th>
<th># Students</th>
<th># In/on the way to Grad School</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2004</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2005</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2006</td>
<td>10</td>
<td>(n/a)</td>
<td>(n/a)</td>
</tr>
</tbody>
</table>

"The SIPHER program was a great experience which I continue to share with people. It really confirmed my intent to transition into embedded systems in the future.”
- Trevor Brown, SIPHER 2004
SIPHER Projects 2006

• Radio Controlled Car Controller
 Graduate Mentor: Graham Hemingway
 Undergraduates: Jessica Kane and Thao Nguyen

• Hybrid Systems Modeling for Fault Diagnosis
 Graduate Mentor: Wu Jian
 Undergraduates: Nathaniel Allotey and Brian Turnbull

• Controlling Lego Robots Using Synchronous Reactive Model of Computation
 Graduate Mentor: Rthan Jackson
 Undergraduates: Javier Lara and Darren White

• Exploring with Lego Robots
 Graduate Mentor: Daniel Balasubramanian
 Undergraduates: Daniel Limbrick and Emily Sherill
Graduate Curriculum Principles

• Rapid transitioning of research results to education
 - Use of methods and tools produced in research program
 - Course material is available for industrial training

• Opportunity for testing new concepts:
 - Formally specified heterogeneous abstractions are used in design flows
 - The abstractions are also design objectives
Graduate Curriculum Structure

Modeling, analysis, and design of hybrid and embedded systems.
Formal models of computation, modeling and simulation of hybrid systems, properties of hybrid systems, analysis methods based on abstractions, reachability, and verification of hybrid systems.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 376</td>
<td>Foundations for HES</td>
<td>CS 376 Foundations for HES provides the foundation for hybrid and embedded systems.</td>
</tr>
<tr>
<td>CS 379</td>
<td>Topics in Embedded SW</td>
<td>CS 379 focuses on topics in embedded system software, including modeling, design, and implementation.</td>
</tr>
<tr>
<td>CS 388</td>
<td>Model Int. Computing</td>
<td>CS 388 explores compositional specification of domain-specific modeling environments.</td>
</tr>
<tr>
<td>CS 396</td>
<td>Sensor Networks</td>
<td>CS 396 delves into sensor network platforms and models of computation.</td>
</tr>
<tr>
<td>CS 315</td>
<td>Automated Verification</td>
<td>CS 315 covers automated verification techniques.</td>
</tr>
<tr>
<td>CS 390</td>
<td>Sensor Network Platform</td>
<td>CS 390 discusses sensor network platforms and models of computation.</td>
</tr>
</tbody>
</table>

- **Systems verification and validation, industrial case studies.**
- Propositional and predicate logic, syntax and semantics of computational tree and linear time logics. Binary decision diagrams, timed automata model and real-time verification. Model checking using the SMV, SPIN, and UPPAAL tools.

- **Role of domain-specific modeling languages (DSML) in embedded system design.** Designing, creating, and evolving DSML-s and modeling environments using metamodeling. Role of model transformations in the design process. Specification and implementation of model transformers. Transformational specification of DSML semantics.

- **Sensor network platforms and models of computation.** Messaging, routing, and time synchronization protocols. Security issues. Sensor network applications.