Reducing Energy Consumption in Wireless Sensor Networks

CHESS seminar
December 11, 2007

Carlo Fischione

University of California at Berkeley
e-mail: fischion@eecs.berkeley.edu
Introductory Overview

Minimum Energy Coding
Radio Power Control
Bit Error Rate
Energy Consumption
Numerical Results
Conclusions and Future Work
“Wireless Sensor Networks (WSNs) are networks for communication, control, sensing and actuation by small nodes communicating through wireless links”
Applications

Tremendous space of applications:

- Monitoring space: ocean water, pollution, ...
- Monitoring things: robots, human body,...
History of WSNs

- WSNs are an area of active research from electronic to computer science since few years.
- Many industries are now investing in this new technology:
 - ABB
 - Fiat
 - Pirelli
 - Siemens
 - United Technology
 - …
Design Principles of WSNs

- Coding
- Radio Power
- Routing
- Modulation
- ...

- Optimization
- Hybrid Systems
- Networked Control
- System Identification
- ...

- Communication

- Computer Science
 - Embedded Software
 - Middleware
 - Operating Systems
 - ...

- Control

- Formal Verification
 - Logic Synthesis
 - Microprocessors
 - ...

- CAD

- WSN

Reducing Energy Consumption in Wireless Sensor Networks

Carlo Fischione

UCB December 11, 2007
Some Challenges...

- How to schedule the link each node should select to forward packets?
- How to quantize the measurements to transmit the minimum amount of information in the presence of uncertainties of the network?
- How to do radio power and rate control, when neither accurate channel models and channel state information are available?
- How to access to the channel?

COSI project: Synthesis of Embedded Networks for Building Automation and Control

A. Pinto & A. Sangivanni-Vincentelli, UC Berkeley
Design Principles of WSNs...

- Design of WSNs includes several techniques (distributed computation, distributed source coding, distributed control, ...).
- Cross-layer approaches are necessary to take into account several interacting techniques and protocols.

A. Sangiovanni-Vincentelli et al.

Reducing Energy Consumption in Wireless Sensor Networks

Carlo Fischione
Introductory Overview

Minimum Energy Coding

Radio Power Control

Bit Error Rate

Energy Consumption

Numerical Results

Conclusions and Future Work
Performance analysis of minimum energy coding schemes in Coded Division Multiple Access (CDMA) wireless sensor networks:

1. **Minimum Energy coding** (ME);

2. **Modified Minimum Energy coding** (MME).

Detailed models of the *energy consumption* and *bit error rate*:

1. coding schemes;
2. wireless channel;
3. power control;
4. hardware characteristics of the transceivers.
Data sensed by a node are coded with a Minimum Energy coding scheme.

The bits of the ME coded data are OOK modulated: only bits having value 1 are transmitted after a DS-CDMA spreading operation.
In ME Coding (Erin and Asada: “Energy Optimal Codes for Wireless Communications” in 38th IEEE CDC 99) a source codeword is mapped into a new codeword having larger length but less number of 1 (or high) bits.

Source codeword

ME codeword

Source codewords having large probability of occurrence are associated to ME codewords with less high bits.

Only high bits are transmitted with OOK modulation.
Only bits having value 1 are transmitted.

- Lower Activity
- Lower interference
- Higher bit error rate

α is the average transmit time per codeword.
Energy consumption per ME codeword

\[
E^{(ME)}_i = E^{(tx)}_i + E^{(rx)}_i = P(tx,ckt) \left(T(on,tx,ME) + T_s \right) + \alpha_{ME} P_i T(on,tx,ME) + P(rx,ckt) \left(T(on,rx,ME) + T_s \right)
\]

ME coding increases the value of three system parameters:

1. the codeword length;
2. the Transmitter active time (it is negligible with respect to the radio power consumption);
3. the Receiver active time: it is not negligible, the power spent to receive is approximately the same as that used to transmit.
MME Coding

- MME coding exploits a structure of the codeword that allows the receiver to go in a sleep state: Kim and Andrews: “An Energy Efficient Source Coding and Modulation Scheme for Wireless Sensor Networks”. In IEEE WSPAWC, 2005.

- In MME coding, energy is saved not only at the transmitter as ME coding, but also at the receiver.

\[\text{MME Coding} \]

\[\text{Reducing Energy Consumption in Wireless Sensor Networks} \]
MME coding: the ME codewords are partitioned into sub-frames starting with an indicator bit.

Indicator bit = 1 => there are not high bits in the sub-frame, there is no need for decoding, and the receiver goes to sleep.

Indicator bit = 0 => there are high bits in the sub-frame, so the decoding operation must be performed, and the receiver cannot go to sleep.
MEE energy consumption per codeword:

\[
E_i^{(MME)} = E_i^{(tx)} + E_i^{(rx)} \\
= P^{(tx,ckt)} \left[T^{(on,tx,MME)} + T_s \right] + \alpha_{MME} P_i T^{(on,tx,MME)} + \\
+ P^{(rx,ckt)} \left[T^{(on,rx,MME)} + (N_i + 1) T_s \right].
\]

Average receiver activity (it is a function of the number of sub-frames, and bit error rate)
Energy of ME and MME

\[E_i^{(ME)} = E_i^{(tx)} + E_i^{(rx)} = P^{(tx,ckt)} \left(T^{(on,tx,ME)} + T_s \right) + \alpha_{ME} P_i T^{(on,tx,ME)} + P^{(rx,ckt)} \left(T^{(on,rx,ME)} + T_s \right) \]

\[E_i^{(MME)} = E_i^{(tx)} + E_i^{(rx)} = P^{(tx,ckt)} \left[T^{(on,tx,MME)} + T_s \right] + \alpha_{MME} P_i T^{(on,tx,MME)} + P^{(rx,ckt)} \left[T^{(on,rx,MME)} + (N_i + 1) T_s \right] . \]
Introductory Overview
Minimum Energy Coding
Radio Power Control
Bit Error Rate
Energy Consumption
Numerical Results
Conclusions and Future Work
Efficient power control algorithms for wireless sensor networks (WSNs) are crucial to **reduce energy consumption**.

- **Lifetime**: in scenario where recharging is not possible, radio power control is very important to increase the network lifetime.

- **Collisions**: power control is beneficial to reduce packet collisions (more retransmitted packets means wasting energy), and increase throughput.

- **Energy** for radio power is responsible from 37% up to 85% of the **total Energy** consumption for off-the-shelf sensor nodes.
Reducing Energy Consumption in Wireless Sensor Networks

Carlo Fischione
Radio Power Control (3)

- Received signal
 \[Z_i(t) = D_i(t) + I_i(t) + N_g(t) \]

\[
D_i(t) = \sqrt{\frac{h_{i,i}(t) P_i}{2} T_b b_i(t)}
\]

Desired Signal

\[
E\{I_i^2(t)\} = \sum_{j=1 \atop j \neq i}^{K} \nu(t) P_j \Omega_{j,i}(t) \frac{T_b^2}{6G}
\]

MAI

\[N_g(t) \]

Thermal Noise

\[\Pr(\nu(t) = 1) = \alpha \]

Transmitter Activity (ME or MME)
The SINR of the signal of a node is expressed as

\[
\text{SINR}_i(t) = \frac{b_i(t) h_{i,i}(t) P_i}{\frac{N_0}{2T_b} + \frac{1}{3G} \sum_{j=1\atop j \neq i}^{K} \nu_j(t) h_{j,i}(t) P_j}
\]

\[
\nu(t) = [\nu_1(t), \ldots, \nu_K(t)]^T
\]

Vector of Binary on/off Processes: ME and MME coding
The Optimization Problem

♣ Mixed integer-real optimization problem

\[
\begin{align*}
\max_{n, P} & \quad \sum_{i=1}^{K} n_i \\
\text{s.t.} & \quad \Pr \left[\text{SINR}_i(\xi, \nu) < \gamma_i \right] \leq \bar{P}_{\text{out}} \\
& \quad \sum_{i=1}^{K} P_i \leq P_T \\
& \quad 0 < P_{i0} \\
& \quad 1 \leq n_i \leq G_{i0}, \quad n_i \in \mathbb{N}, \quad i = 1, \ldots, K
\end{align*}
\]

\[
P = [P_{01}, \ldots, P_{0K}]^T \quad P_i = P_{i0}n_i, \quad i = 0, \ldots, K
\]

\[
n = [n_1, n_2, \ldots, n_K]^T
\]

How to express the constraints on the outage probability?

\[Pr \left[SIR_i(\xi, \nu) < \gamma_i \right] = \int_0^{\gamma_i} f_{SIR_i}(x) dx \]

How to solve efficiently the problem?
- good precision of the solution (otherwise waste of resources);
- computationally affordable (WSNs have limited processing capabilities).
The SINR is a combination of log-normal processes weighted with on/off binary random processes, it is approximated with an overall Log-normal:

\[\text{SINR}_i(\xi(t), \nu(t)) = L_i(\xi(t), \nu(t))^{-\frac{1}{2}} \quad \rightarrow \quad L_i(\xi(t), \nu(t)) \approx e^{Z_i(t)} \quad \rightarrow \quad Z_i \in G(m_{Z_i}, \sigma_{Z_i}) \]

\[m_{Z_i} = \ln \left[\frac{M_{m1}^2}{\sqrt{M_{m2}}} \right] \quad M_{m1} \triangleq E_{\xi(t),\nu(t)} \{ \text{SINR}(\xi(t), \nu(t)) \}, \]

\[\sigma_{Z_i}^2 = \ln \left[\frac{M_{m2}}{M_{m1}^2} \right] \quad M_{m2} \triangleq E_{\xi(t),\nu(t)} \{ \text{SINR}^2(\xi(t), \nu(t)) \}, \]

\[P_r[\text{SINR}_i(\xi, \nu) < \gamma_i] = Q \left(\frac{-2\ln \gamma_i - m_{Z_i}}{\sigma_{Z_i}} \right) \quad Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-t^2/2} dt \]

\[\frac{P_i0}{I_i(n, P_{-i})} \geq \gamma_i^2 \]

\[I_i(n, P_{-i}) = \frac{G_i(P_{-i}) q_i^{-\frac{1}{2}}}{H_i(P_{-i})^{2q_i-2}} \]

\[q_i = Q^{-1}(\bar{P}^i_{\text{out}}) \]

\[H_i(n, P_{-i}) = M_{m1} P_{i0} \]

\[G_i(n, P_{-i}) = M_{m2} P_{i0}^2 \]
Main Problem

\[\max_{\mathbf{n}, \mathbf{P}} \sum_{i=1}^{K} n_i \]
\[s.t. \quad \frac{P_{i0}}{I_i(\mathbf{n}, \mathbf{P}_{-i})} \geq \gamma_i^2 \quad \forall i = 1, \ldots, K \]
\[\quad \sum_{i=1}^{K} n_i P_{i0} \leq P_T \]
\[\quad P_{i0} > 0 \quad \forall i = 1, \ldots, K \]
\[\quad 1 \leq n_i \leq G_i, \quad n_i \in \mathbb{N}^+ \quad \forall i = 1, \ldots, K \]

Any pair of vector \(\mathbf{n} \) and \(\mathbf{P} \) that solves the relaxation problem, with a cost function \(P_T \)'s, provides a feasible solution of the original problem.

Proposition 1: \(i \mathbf{n} \leq \mathbf{n} \) and \(\forall i \), \(\mathbf{P} \) for \(\mathbf{n} \) and \(\mathbf{P} \).

Theorem: If the \(\mathbf{p} \) is a solution of the relaxation problem, then it verifies the following equations.

\[\frac{P_{i0}}{I_i(\mathbf{n}, \mathbf{P}_{-i})} = \gamma_i^2 \quad \forall i = 1, \ldots, K \]
Proposition 2: If \(\nabla n \) is feasible, the pair \((n, P) \) can be a solution of the original problem only if

\[
\|n\|_1 \geq \|\nabla n\|_1
\]

The proposition says that, given a feasible vector \(\nabla n \), the search for the feasible solutions is restricted to

\[
\mathcal{N}_\Sigma(\nabla n) = \mathcal{N} \setminus \{ n \text{ such that } \|n\|_1 \leq \|\nabla n\|_1 \}
\]

Proposition 3: If \(\nabla n \) is unfeasible, then any \(n \) is unfeasible as well.

\[
\|n\|_1 \leq \|\nabla n\|_1
\]

The proposition says that, if \(\nabla n \) is unfeasible, the set of unfeasible solutions can be restricted to

\[
\mathcal{N}_\Sigma(\nabla n) = \mathcal{N} \setminus \{ n \text{ such that } \|n\|_1 \geq \|\nabla n\|_1 \}
\]
A Relaxation Problem is solved by contraction mappings (Fischione, Butussi, IEEE ICC 2007)

\[
\min_{\mathbf{P}} \sum_{i=1}^{K} n_i P_{i0} \\
\text{s.t. } \frac{P_{i0}}{I_i(n, \mathbf{P}^{-i})} = \gamma_i^2 \quad \forall i = 1, \ldots, K \\
P_{i0} > 0 \quad \forall i = 1, \ldots, K \\
1 \leq n_i \leq G_i, \quad n_i \in \mathbb{N}^+ \quad \forall i = 1, \ldots, K
\]

A branch-and-bound algorithm builds the set of feasible and unfeasible rates by solving the Relaxation Problem, collecting feasible solutions, and reducing the candidate solutions via Proposition 2 and 3.

It can be proved that the algorithm converges within a random time shorter than an exhaustive search over the initial set of possible rates.
Numerical Results for Power Control

<table>
<thead>
<tr>
<th>Scenario</th>
<th>(\sigma_{\xi_i})</th>
<th>(\alpha_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5, 0.5, 0.5, 0.5</td>
<td>0.4, 0.4, 0.4, 0.4</td>
</tr>
<tr>
<td>B</td>
<td>0.5, 0.5, 0.5, 0.5</td>
<td>0.2, 0.2, 0.2, 0.2</td>
</tr>
<tr>
<td>C</td>
<td>0.5, 0.5, 0.5, 0.5</td>
<td>0.7, 0.7, 0.7, 0.7</td>
</tr>
<tr>
<td>D</td>
<td>0.4, 0.4, 0.4, 0.4</td>
<td>0.4, 0.4, 0.4, 0.4</td>
</tr>
<tr>
<td>E</td>
<td>0.6, 0.6, 0.6, 0.6</td>
<td>0.4, 0.4, 0.4, 0.4</td>
</tr>
<tr>
<td>M</td>
<td>0.5, 0.6, 0.4, 0.6</td>
<td>0.2, 0.4, 0.2, 0.7</td>
</tr>
</tbody>
</table>

Number of rate vectors explored (solutions of the Relaxation Problem) to get the optimal solution with our proposed method:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>min</th>
<th>max</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>46</td>
<td>247</td>
<td>150</td>
</tr>
<tr>
<td>B</td>
<td>84</td>
<td>247</td>
<td>153</td>
</tr>
<tr>
<td>C</td>
<td>47</td>
<td>238</td>
<td>137</td>
</tr>
<tr>
<td>D</td>
<td>84</td>
<td>247</td>
<td>149</td>
</tr>
<tr>
<td>E</td>
<td>47</td>
<td>247</td>
<td>141</td>
</tr>
<tr>
<td>M</td>
<td>31</td>
<td>222</td>
<td>103</td>
</tr>
</tbody>
</table>

Convergence of the Relaxation Problem

An exhaustive search over all rate vectors would have required \(9^4 = 6561 \) solutions of the relaxation problem.
Introductory Overview
Minimum Energy Coding
Radio Power Control
Bit Error Rate
Energy Consumption
Numerical Results
Conclusions and Future Work
Bit Error Rate

- Decision variable at the receiver
 \[Z_i(t) = D_i(t) + I_i(t) + N_g(t) \]

- The decision variable is erroneously decoded:
 - as a high bit, when a low bit was transmitted:
 \[p_{i|0} = \Pr [Z_i(t) \geq \delta_i | b_i(t) = 0, h_i(t), \nu_j(t)] \]
 - as a low bit when a high bit was transmitted:
 \[p_{i|1} = \Pr [Z_i(t) < \delta_i | b_i(t) = 1, h_i(t), \nu_j(t)] \]
Bit Error Rate (2)

The probabilities are computed adopting the usual standard Gaussian approximation, where $Z_i(t)$ is modelled as a Gaussian random variable conditioned to the distribution of the channel coefficients and coding.

$$Z_i(t) \sim \mathcal{N}\left(\mu_{Z_i(t)}, \sigma_{Z_i(t)}\right)$$

$$p_{i|0} = Q\left(\frac{\delta_i(t)}{\sigma_{Z_i(t)}}\right),$$

$$p_{i|1} = Q\left(\frac{\mu_{Z_i(t)|1} - \delta_i(t)}{\sigma_{Z_i(t)}}\right),$$

\begin{align*}
\mu_{Z_i(t)} &= \begin{cases}
\mu_{Z_i(t)|0} = 0 & \text{if } b_i(t) = 0 \\
\mu_{Z_i(t)|1} = \sqrt{\frac{P_i \Omega_{i,i}(t)}{2} T_b^2} & \text{if } b_i(t) = 1
\end{cases} \\
\sigma_{Z_i(t)} &= \sqrt{\frac{N_0 T_b}{4} + \sum_{\substack{j=1 \atop j \neq i}}^{K} \nu(t) P_j \Omega_{j,i}(t) \frac{T_b^2}{6G}}.
\end{align*}
The Bit error probability is computed using the Log Normal SINR expression, and the Stirling approximation for the statistical Expectation:

\[\Phi_i(\delta_i) \approx \frac{2}{3} [(1 - \alpha_i)Q(\mu_{\zeta_i0}) + \alpha_i Q(\mu_{\zeta_i1})] + \frac{1}{6} [(1 - \alpha_i)Q(\mu_{\zeta_i0} + \sqrt{3}\sigma_{\zeta_i0}) + (1 - \alpha_i)Q(\mu_{\zeta_i0} - \sqrt{3}\sigma_{\zeta_i0}) + \alpha_i] . \]

It can be proved that the BER is a convex function.

- The gradient method is used to derive the optimal decision threshold.
The characterization of Φ_i can be used to compute the BER of

1. ME: $\alpha = \alpha_{ME}$

2. MME: the coding structure,

 $\alpha = \alpha_{MME}$
Introductory Overview
Main Contribution
System Description
Radio Power Control
Bit Error Rate
Energy Consumption
Numerical Results
Conclusions and Future Work
Average ME Energy Consumption

\[
E_{i}^{(ME)} = E_{i}^{(tx)} + E_{i}^{(rx)}
\]
\[
= P(t_{x}, ckt) \left(T(on, tx, ME) + T_{s} \right) + \alpha_{ME} P_{i} T(on, tx, ME) + P(r_{x}, ckt) \left(T(on, rx, ME) + T_{s} \right)
\]

Transmitter-receive pairs

\[
E^{(ME)} = \frac{1}{K} \sum_{i=1}^{K} E_{i}^{(ME)}
\]

Reducing Energy Consumption in Wireless Sensor Networks

UCB December 11, 2007

Carlo Fischione
Average Energy MME Consumption

♣ The energy is function of the BER

\[
E^{(MME)}_i = E^{(tx)}_i + E^{(rx)}_i \\
= P(t.x, ckt) \left[T^{(on,tx,MME)} + T_s \right] + \alpha_{MME} P_i T^{(on,tx,MME)} + \\
+ P(r.x, ckt) \left[T^{(on,rx,MME)} + (N_i + 1) T_s \right].
\]

\[N_i = N_s \left[1 - \Pr (b_{ind} = 0) \left(1 - \Phi_i \right) - \Pr (b_{ind} = 1) \Phi_i \right] \]

\[E^{(MME)} = \frac{1}{K} \sum_{i=1}^{K} E^{(MME)}_i\]

\[\rho_{dB} = \left(\frac{E^{MME}}{E^{MME}} \right)_{dB}\]

Receiver activity per MME codeword

MME Energy Gain

UCB December 11, 2007

Reducing Energy Consumption in Wireless Sensor Networks

Carlo Fischione
♣ Introductory Overview
♣ Main Contribution
♣ System Description
♣ Radio Power Control
♣ Bit Error Rate
♣ Energy Consumption
♣ Numerical Results
♣ Conclusions and Future Work
Numerical Results

CC2420 was taken as reference for the energy parameters

\[K = 10 \]

Number of transmitter receiver pairs

\[P_l (d_r) \mid_{dB} = -55 \text{ dB} \]

Path loss at reference distance

\[G = 64 \]

Spreading gain

\[N_0/2 \mid_{dB} = -174 \text{ dBm} \]

Noise Variance

\[\text{SINR} \gamma = 3.1 \text{ dB} \]

SINR Threshold

\[R_b = 250 \text{Kbps} \]

Bit rate
Convergence of the power minimization algorithm. On the x-axis is reported the number of iterations.

```
Algorithm Relaxation Problem
1. \( t := 0 \);
2. \( n(t-1) := 1 \);
3. \( p(t-1) := 0 \);
4. \( n(t) := 1 \);
5. \( p(t) := p_0 \);
6. while \( |p(t) - p(t-1)| \geq \varepsilon \) do
   7. for \( i := 1 : K \) do
   8. \( p_i(t) := I_i(n_{-i}(t-1), p_{-i}(t-1)) \gamma_i \)
   9. end for;
10. \( t := t + 1 \);
11. end while;
```
Bit error probability for the ME and MME cases (note that they overlap).
MME Energy Gain as function of the sub-frame length, for different values of the transmitter activity

\[\rho_{dB} = \left(\frac{E^{ME}}{E^{MME}} \right)_{dB} \]
Conclusions and Future Work

- A general framework for accurate analysis of the Energy Consumption of ME and MME coding has been proposed.
 - Accurate Energy model and wireless propagation scenario.
 - Distributed power minimization strategy.
 - Optimal decision thresholds.

Future studies
- delay characterization.
- distributed estimation.
- simpler power control (geometric programming...)
Acknowledgements

♣ M. Butussi
♣ K. H. Johannson
♣ F. Graziosi
♣ A. Sangiovanni-Vincentelli
♣ F. Santucci
♣ B. Zurita Ares
Questions

Thank you for your attention!

Any questions?