From synchronous models to distributed, asynchronous architectures

Stavros Tripakis

Joint work with
Claudio Pinello, Cadence
Alberto Sangiovanni-Vincentelli, UC Berkeley
Albert Benveniste, IRISA (France)
Paul Caspi, VERIMAG (France)
Marco di Natale, SSSA (Italy)
Model-based design: semantics-preserving implementation of “high-level” models
Model-based design: semantics-preserving implementation of “high-level” models

Simulink
Stateflow
...

Simulink
Stateflow
...

design
implementation
application

single-processor single-task
distributed, synchronous (TTA)
distributed, asynchronous (KPN, LTTA)
single-processor multi-task

distributed, asynchronous (KPN, LTTA)

this talk

[IEEE Trans. Computers, Jan’08]
Goal: from Sync to LTTPA

From a synchronous block diagram...

... to an implementation on LTTPA
Goal: from Sync to LT TA

From a synchronous block diagram...

... to an implementation on LT TA: distributed, asynchronous

Preserve the semantics!
Synchronous block diagrams

- Widely used in **embedded systems**
- Fundamental model behind (discrete-time) **Simulink**, SCADE, synchronous languages (Lustre, Esterel, …)
- **Synchronous**, deterministic semantics:

 ![Synchronous block diagram](image)

 - Throttle → Engine → Torque Converter → Gearset and Shift Mechanism → Vehicle Dynamics
 - Transmission (inputs → outputs)
 - brake

 ![Synchronous block diagram](image)
Example

Static firing order in each synchronous cycle:

\[M_1, M_3, M_2 \]
LTTA
the Loosely Time-Triggered Architecture

Process structure:
initialize;
while (true) {
 await trigger;
 process body;
}

Communication by Sampling:
CbS.write(), CbS.read()

Assumptions: (1) atomic actions, (2) lossless network
More assumptions

From Sync…

… to LT TA

Assignment of blocks to nodes is 1-1
Intermediate layer: FFP

Sync

FFP: similar to a Kahn process network but FIFOs are finite

LTCA
FFP: the Finite FIFO Platform

Process structure:
initialize;
while (true) {
 await trigger;
 process body;
}

asynchronous

FIFO queue:
FIFO.isFull(),
FIFO.isEmpty(),
FIFO.put(),
FIFO.get()
Intermediate layer: FFP

Sync

FFP

LTTA

Problem 1: from Sync to FFP

Problem 2: from FFP to LTTA
How to go from FFP to LT TA?

- Suffices to implement FIFO queues on top of CbS buffers
 - Every FIFO of size k can be implemented with $k+1$ CbS buffers.
 - The +1 is for “back-pressure” (acknowledgments)

```java
get() returns (msg) {
    ismsgNew := dataCbS[(rc mod k)].isNew();
    if (ismsgNew) {
        msg := dataCbS[(rc mod k)].read();
        rc := rc+1;
        backCbS.write(rc);
        oldmsg := msg;
    } else
        msg := oldmsg;
    return (msg);
}
```

```java
put(msg) {
    dataCbS[(wc mod k)].write(msg);
    wc := wc+1;
}
```

```java
isFull() {
    lrc := backCbS.read();
    return (wc-lrc >= k);
}
```

```java
isEmpty() {
    return not (dataCbS[(rc mod k)].isNew());
}
```

Details in paper
How to go from Sync to FFP?

```java
initialize state;
initialize output queues;
while (true) {
    await trigger;
    if (exists empty input queue OR full output queue) {
        /* skip */
    } else {
        /* fire */
        read from input queues;
        compute;
        write to output queues;
        update state;
    }
}
```
How to go from Sync to FFP?

```
initialize state;
initialize output queues;
while (true) {
    await trigger;
    if ( inQ1.isEmpty() OR inQ2.isEmpty() OR outQ1.isFull() OR ... ) {
        /* skip */
    } else {
        /* fire */
        read from input queues;
        compute;
        write to output queues;
        update state;
    }
}
```
Semantical preservation

- **Theorem**: semantics is preserved provided queues have sufficient sizes (otherwise may deadlock)
 - Sufficient: 1-place FIFOs for non-unit-delay links, 2-place for UDs
 - Tight bound: at least $m+1$ places for every loop, where m is number of UDs in that loop

- Semantical preservation = **stream** preservation
 - The (infinite) sequence of values observed at a given link of Sync is equal to the sequence observed at the corresponding link in FFP
Why 2 place queues for unit-delays?

What would happen if both queues had size =1?
Why 2 place queues for unit-delays?

Deadlock!
Proving preservation

• Used old theories [1970s]

• Marked graphs [Commoner et al ‘71]
 – Used to show that FFP is **live**: every process can **fire**
 infinitely often (does not deadlock)
 – Therefore all streams are infinite

• Kahn Process Networks [Kahn’74]
 – Every KPN is **determinate**: streams do not depend on
 process interleaving
 – One possible interleaving is the static one of the original
 synchronous diagram: this obviously yields the same streams
 as in the synchronous semantics
 – Thus every other interleaving will also yield equal streams
Proving liveness

• View FFP as a marked graph

• Marked graphs:
 – Subclass of Petri Nets
 • Every place has a unique input and a unique output transition

• Theorem [Commoner et al]:
 – A marked graph is live iff every loop has positive token count
 – (token count invariant in a loop)
Example 1

Marked graph

Petri net with bounded-capacity places
Example 2: deadlock

Petri net with bounded-capacity places
Performance analysis

• **Throughput:**
 – How often processes fire (vs. skip) – i.e., how often outputs are produced

• **Latency:**
 – What is the life-span of a token from production to consumption

• **Metrics:** *real-time* (RT) vs. *logical-time* (LT)
 – Real-time: metrics depend on real-time behavior of clocks (e.g., clock rates)
 – Logical-time: metrics depend only on topology, queue sizes and initial conditions!

• **Results:**
 – Algorithms to compute worst-case LT throughput/latency for arbitrary topologies
 – Theorems to compute them analytically (formulas) for special topologies
 – Theorems that relate RT metrics and LT metrics
Real-time and logical-time throughput: definitions

\[\lambda^{rt}(\mathcal{F}, P_i, c) = \lim_{t \to \infty} \frac{\text{fireno}_{\mathcal{F},c,P_i}(t)}{t} \]

\[\lambda^{lt}(\mathcal{F}, P_i, c, \chi) = \lim_{n \to \infty} \frac{\text{fireno}_{\mathcal{F},c,P_i}(\chi(n))}{n} \]

\[\lambda^{wclt}(\mathcal{F}, P_i, \chi) = \inf_{c \in \mathcal{C}(\chi)} \lambda^{lt}(\mathcal{F}, P_i, c, \chi) \]
The “slow” triggering policy

• At each synchronous cycle:
 – First trigger all disabled processes (they will skip)
 – Then trigger all enabled processes (they will fire)
 – Note:
 • Each queue has a unique reader and writer
 • Therefore firing one process cannot disable another
 • Thus the order in which the enabled processes are fired does not matter

• Theorem: worst-case logical-time throughput is achieved by real-time clocks that follow the slow triggering policy
Logical-time throughput: example

Worst-case scenario:

LT throughput:

\[
\text{LT thput} = \frac{1}{2}
\]

\[
\text{LT thput} = 1
\]
Computing the worst-case logical-time throughput

Reachable lasso of marked graph

LT thput = 3/4

Deterministic (slow) firing policy
Demo

\[
\begin{bmatrix}
1 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{bmatrix}
\]

4 places, 4 transitions
Incidence matrix (row-by-row, rows are places):
[1, 0, 0, -1, 1, 1, 0, 0, 1, 1, 0, 0, 1, -1]
Place bounds: [3, 2, 2, 2]
Initial markings: [[0, 0, 0, 0], [0, 0, 0, 1]]
Worst-case logical-time throughput: connected networks

Theorem 8 Given a connected SFFP \(\mathcal{F} \),

\[
\forall P_i, P_j \in \mathcal{F}, \lambda^*(\mathcal{F}, P_i) = \lambda^*(\mathcal{F}, P_j).
\]

i.e.: for connected networks, WCLT throughput is the same for all processes

Intuition: total # tokens produced = total # tokens consumed
Relating real-time and worst-case logical-time throughput

Theorem 9: Let \mathcal{F} be an SFFP. Let Δ be any positive real number. Let c be a vector of clocks such that $\forall i, \forall n, c_i(n+1) - c_i(n) \leq \Delta$. Then, for any process P_i of \mathcal{F}:

$$\chi^{rt}(\mathcal{F}, P_i, c) \geq \frac{\chi^*(\mathcal{F}, P_i)}{\Delta}$$
Latency: defined w.r.t. a path

\[
\mu^{rt}(F, \pi, c) = \sup_{z} \text{travel}_{F,c,\pi}(z)
\]
Latency: defined w.r.t. a path

\[
\mu^{lt}(\mathcal{F}, \pi, c, \chi) = \sup_z \text{travel}^\chi_{\mathcal{F}, c, \pi}(z)
\]

\[
\mu^{wclt}(\mathcal{F}, \pi, \chi) = \sup_{c \in C(\chi)} \mu^{lt}(\mathcal{F}, \pi, c, \chi)
\]
Worst-case logical-time latency: computation

How long until this token gets consumed?

3 firings of P2
Worst-case logical-time latency: computation

• Compute reachability graph

• For every reachable marking m s.t. the first queue in the path is non-empty:
 – Compute $T(m) =$ sum of all tokens in the path
 – Compute $L(m) =$ #steps it takes to fire the destination process $T(m)$ times (w.r.t. the slow policy)

• WCLT latency = $\max L(m)$ over all such m
Demo

1 places, 2 transitions
Incidence matrix (row-by-row, rows are places): [1,-1]
Place bounds: [1]
Initial markings: [[0]]

1 places, 2 transitions
Incidence matrix (row-by-row, rows are places): [1,-1]
Place bounds: [2]
Initial markings: [[0]]
Relating real-time and worst-case logical-time latency

Theorem 17 Let \mathcal{F} be an SFFP. Let Δ be any positive real number. Let c be a vector of clocks such that $\forall i, \forall n, c_i(n + 1) - c_i(n) \leq \Delta$. Then, for any path π of \mathcal{F}:

$$\mu^rt(\mathcal{F}, \pi, c) < \Delta \cdot (\mu^*(\mathcal{F}, \pi) + 1)$$
Conclusions

• **Semantics-preserving** implementation of synchronous models on asynchronous execution platforms

• Layered approach: “platform-based design”

• Performance analysis
 – Logical time throughput and latency
 – Can be used for **design-space exploration** (e.g., queue sizing)
What next?

• Barely scratched the surface:

• More implementation options:
 – Lift 1-1 mapping assumption
 – Implement FFP on top of other platforms than LT TA
 • Bonus: semantical preservation of synchronous models!
 – ...

• More performance analysis:
 – More efficient algorithms to compute LT throughput/latency
 – Done only for FFP, what about LT TA?
 • Lift negligible execution/communication delay assumptions
 • Lift lossless network assumption
 – What about average-case vs. worst-case?
 – What if other information on clock rates is available?
 – ...

• Design-space exploration:
 – How to efficiently explore throughput-optimal queue sizes?
 – ...

Thank you

Questions?