Towards the Building Integrated Operating System

David Culler
University of California, Berkeley
July 23, 2010
- Action Webs Meeting -

“Energy permits things to exist; information, to behave purposefully.”
W. Ware, 1997
Pervasive monitoring of a large complex load
To understand energy spend, reduce it, forecast
and optimize in concert with an intelligent grid
Towards an “Aware” Energy Infrastructure

Baseline + Dispatchable Tiers

Oblivious Loads

Generation → Transmission → Distribution → Demand

Non-Dispatchable Sources

Aware Interactive Loads

Communication
Where to Start?

• **Buildings**
 - 72% of electrical consumption (US),
 - 40-50% of total consumption,
 - 42% of GHG footprint
 - US commercial building consumption doubled 1980-2000, 1.5x more by 2025 [NREL]

• Where Coal is used

• Prime target of opportunity for renewable supplies
Load-following Supply

Cal ISO Daily Peak Loads
January 1, 2000 - December 31, 2000

Peak Day August 16 -
43.5 GW

Commercial AC
Residential AC
Growing proportion of renewables leads to higher price volatility. October 2008 to March 2010: >90 hours with negative prices; highest price reached: +€500/MWh, lowest -€500/MWh

Source: EEX spot prices.
Traditional Building Models

- Occupant Loads
- Process Loads
- Transport
- Light
- Electrical
- HVAC
- BMS

8/25/2010 LoCal Retreat 5-10
Integrated Energy View of Buildings
Stages of Energy Effectiveness

• Waste elimination
 – Do Nothing Well !!!

• Power Proportionality
 – Power : Performance (utilization)
 – Partial Load - from nothing to peak

• Sculpting
 – Identify the energy slack and utilize it

• Negotiated Grid / Load / Human Interaction
 – Plan, Forecast, Negotiate, Manage
Our Buildings

Do nothing poorly

- Wasteful
- <20 % Power Prop.
- Predictable
- Sculptable?
Our Buildings

Use

Design

Annual Consumption

Environmental

Operational

Soda Hall Power Consumption 494 KW

chart by amCharts.com

HVAC

Lighting

IT and Plug Load

PDUs, CRACs

Servers

Custom period: 2009-01-01 to 2009-12-31

8/25/2010 11
Building-Scale Monitoring Architecture

The 3 Views

Environments & Activity

Climate Plant

Load Tree

CT: mains power monitoring

panel level power monitoring

ACme: plug load energy monitor and controller

Building Environmental Manufacturing Infrastructure

Temperature

Humidity

Pressure

Vibration
Audit Methodology

• **Measure** the envelope
• **Map** the underlying load tree
• **Identify** major load points
• **Model, Instrument, Disaggregate**
 - specific instrument and analysis selection
• **Apply recursively**
Methodology Experience

• Guidance Criteria
 - Disambiguation goal isolates usage
 - Reconfiguration focuses on opportunities for mitigation
 - Sculptability focuses on shiftable loads

• Slices Alternative
 - instrument slice from supply to consumption

• Opportunism
 - Measure the best you can get ahold of
Waste Less

Building-Two Grid (B2G) Cory Hall Test Bed

Kick-Off

MBCx implementation

Cory Baseline

ML tool move

ML Fire

Winter Curtailment

Post-Instal Metering

Power Shutdown Meter Installation

8/15/09 9/15/09 10/15/09 11/15/09 12/15/09 1/15/10 2/15/10 3/15/10 4/15/10 5/15/10 6/15/10
State of the Art ...
Buildings within a Building

Floor Plan

<table>
<thead>
<tr>
<th>Floor</th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Graduate Student Offices</td>
<td>Staff Offices and Class Rooms</td>
<td>Research Laboratories</td>
</tr>
<tr>
<td>2nd</td>
<td>Office/Class</td>
<td>LABS</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>Electrical/General Mechanical Room</td>
<td>Data Center</td>
<td></td>
</tr>
</tbody>
</table>

Equipment
- Chiller: 150 HP, 210 KVA
- Trans: 2 x 150 KVA
- Switch: 2 x 150 KVA
- Surge: 2 x 150 KVA
- Heat: 2 x 150 KVA
- Electric: 2 x 150 KVA
- Power: 2 x 150 KVA

Highlights
- Power Meters
- Existing Environmental EDC System
- Obvious Campus Power Monitor

Notes
- AH-1: Offices
- AH-2: Graduate Student Offices
- AC-4B: [2x4]
Layered Architecture

- **Presentation**
 - Portals
 - User Feedback
 - OADR
 - Forecast

- **Analysis**
 - Simulation
 - Recommissioning
 - Diagnosis

- **Logical**
 - Meta-Data
 - Model
 - Physical Information
 - Events
 - Networks
 - Repositories

- **Physical**
 - Building Systems
 - Sensors
 - Comms Links
Physical Tier

- 10 Dent Powerscout 18-channel (6x3) electrical meters
 - RS485 – Ethernet/IP – sMAP
- 2 Power Standards Labs meters
 - Ethernet
- 2 (existing) ION 6200 meters
- 70 ACME Receptacle meters
 - 802.15.4/LoWPAN/IP
- 4 rooftop Solar/TSR/PAR/Temp/Hum
- Condensate meter, Obvius Steam
- Vaisala Meteorological Station
- Existing SCADA integration
- Remote Programmable PCT => Action
- Interior usage, activity, environmental condition
Power Flows
Electric Tree Monitoring

- ION6200: mains power monitoring
- DENT PowerScout18: branch level
- VERIS E30: panel level
- AC Meter: plug level monitoring and control
Main Switch Block

12.5kV 3 Phase

ION 6200

480V 3 Phase

PSL PQUBE (2)

Dent PowerScout (10)

RS-485

Ethernet VLAN

eth0:pn-CEC

sMAP
• Connectivity: RS-485 – multi-drop serial protocol
• Data model: Modbus (“everything is a 16-bit register”)
 – need register map to interpret
• Three-phase power measurements
 – about 50 “channels” per three-phase circuit
 – six circuits supported
• Registers updated at 2Hz
Interconnect

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Year</th>
<th>Network</th>
<th>Target Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus</td>
<td>1979</td>
<td>RS-485, TCP/IP</td>
<td>Industrial Control</td>
</tr>
<tr>
<td>Fieldbus/HART</td>
<td>1988</td>
<td>various</td>
<td>Industrial Control</td>
</tr>
<tr>
<td>BACnet</td>
<td>1995</td>
<td>AR CNET, Ethernet, IP, RS-232, etc.</td>
<td>Building Automation: HVAC, Lighting, Fire...</td>
</tr>
<tr>
<td>WirelessHART</td>
<td>2007</td>
<td>802.15.4e</td>
<td>Industrial control, wire replacement</td>
</tr>
<tr>
<td>SEP 2.0</td>
<td>2010</td>
<td>802.15.4</td>
<td>Home automation</td>
</tr>
</tbody>
</table>

- **HUGE installed/legacy base**
- **Multiple generations of hardware and software in the same building**
- **Typical integration: proprietary vertical BMS**
 - Data in at the bottom
 - Data products out at the top
Real Data Feeds

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>ION6200</td>
<td>XML/proprietary</td>
</tr>
<tr>
<td>Electric branch meter</td>
<td>Dent Powerscout 3/18</td>
<td>Modbus/RS-485</td>
</tr>
<tr>
<td>Electric branch meter</td>
<td>PSL PQube</td>
<td>HTML table</td>
</tr>
<tr>
<td>Electric panel meter</td>
<td>Veris E30</td>
<td>Modbus/RS-485</td>
</tr>
<tr>
<td>Electric home meter</td>
<td>GE</td>
<td>ANSI C12.19/IR</td>
</tr>
<tr>
<td>Chilled water</td>
<td></td>
<td>4-20mA current loop</td>
</tr>
<tr>
<td>Steam condensate</td>
<td></td>
<td>Modbus/TCP</td>
</tr>
<tr>
<td>Environmental</td>
<td>Sun Blackbox</td>
<td>XML/proprietary</td>
</tr>
<tr>
<td>PCT (programmable thermostat)</td>
<td>Basys QW Series</td>
<td>Zigbee</td>
</tr>
<tr>
<td>Climate</td>
<td>Hydrowatch node</td>
<td>6lowpan/IPv6</td>
</tr>
</tbody>
</table>
Key Enabler: Hardware Abstraction

Applications:
- Modeling
- Control
- Visualization
- Location
- Debugging
- Personal Feedback
- Continuous Commissioning
- Actuation
- Authentication

Physical Information:
- Water
- Electrical
- Geographical
- Occupancy
- Structural
- Weather
- Environmental
- Actuator

sMAP
IP Everywhere

sMAP Resources

- California ISO
- EBHTTP / IPv6 / 6LowPAN
- Wireless Mesh Network
- Edge Router
- Modbus
- AC plug meter
- Light switch
- Temperature/PAR/TSR
- Vibration / Humidity

Applications

- Google PowerMeter
- Cell phone
- Every Building
- Database
- SCADA

Internet

- Proxy Server
- EBHTTP Translation
- RS-485
- sMAP Gateway
sMAP restful web services

/ # list resource under URI root [GET]
data # list sense points under resource data [GET]
/sense_point # select a sense points [GET]
meter # meters provide this service [GET]
/channel # a particular channel [GET]
/reading # meter reading [GET]
/format # calibration and units [GET/POST]
/parameter # sampling parameter [GET/POST]
/profile # history of readings [GET]
/reporting # create and query periodic reports [GET/POST]

POST requests supply JSON objects as arguments:

POST: http://meter1.cs.berkeley.edu/reporting/create

{ "ReportResource" : "/data/325/meter/*/reading",
 "ReportDeliveryLocation" :
 "http://webs.cs.berkeley.edu/recv.php",
 "Period" : 0, "Minimum" : 50, "Maximum" : 100 }
Typical Interaction

• Discover sMAP Instance
• Read/Poll
 - GET /data/ABC/sensor/real_power/formatting
 - GET /data/**/**/reading
• Subscribe
 - Create reporting instance with HTTP URL for “callback”
 - Specify fixed rate or each new report
 - Persists until deleted, times out, or fails
 - Incremental update (part of a resource) sometimes necessary
Sense Point | Description | Channels
---|---|---
A, B, C | Single-phase | real, apparent, reactive power + energy. power factor. current. phase-neutral voltage
AB, BC, AC | Phase-to-phase | voltage
ABC | Whole-circuit | real, apparent, reactive power + energy. power factor. current. phase-neutral voltage. line frequency
Open Standards => Horizontal Integration
sMAP - homogeneous access to heterogeneous information

![sMAP Console](http://smap.cs.berkeley.edu/)

Model
- Type
- Make
- Status
- Uptime
- LocalTime
- Streams

![sMAP root](http://smap.cs.berkeley.edu/)
IS 4 Interface Overview

/ # root - status information [GET]
/is4 # a particular channel [GET]
 /info # statistical system information [GET]
 /publish # publishing resource [GET/PUT]
 /all # list of all publishers [GET]
 /id # sub-children [GET]
 /<id> # id of publisher [GET/POST]
 /name # name alias for this id [GET]
 /mysubs # list/add to pub subscriptions

[GET/PUT/DELETE]

POST requests supply JSON objects as arguments:

POST:
 http://is4server.com:8080/is4/Cory/lt/Main/devices/ion6200_5A7/A_sensor_currentDemand

DATA:
{
 "SummationDelivered": 6824953.0,
 "$schema": {"$ref":"http://webs.cs.berkeley.edu/schema/meter/reading"},
 "Version": 1,
 "ReadingTime": 1279859526,
 "SummationInterval": 30}
Web Applications

sMAP

Amazon Cloud EveryBuilding

Push

{ "ReportResource" : "/data/*//*/reading,
 "ReportDeliveryLocation" : "http://...amazonaws.com/append/basement-1-elt-A"
}

{ "ReportResource" : "/data/ABC/sensor/true_power/reading",
}
Gateways for legacy devices, native implementations for new ones
Library of 8 different devices – currently represents XML/CSV feeds, Modbus, and embedded (mode-class)
Power Breakdown

sMAP Aggregate Plotting Engine

Research presented are partially based upon work supported by the National Science Foundation under grants CPS-093209 and CPS-0931843. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Operational Efficiency and Fine-Grained monitoring

• Pump settings
• Elimination of simultaneous heating and cooling
• ...
The Data tells the story...

- Monitor Based Commissioning
 - Eliminate simultaneous heat/cool
 - AC91 on schedule
* Will continue decline on circuit 4PE as tools move.
AC 90 Scheduling HVAC on/off.
Extracting Deeper
Energy “Slack”

Thermostatically Controlled Load

Set Point

IPS

Graphs showing temperature, humidity, light, and power over time.
An Aware House
Supply-Following Loads
Supply-Following Loads

[Graphs and charts showing energy usage and power over time for different scenarios: Oblivious, Energy-aware, and Energy-aware 2.]
Towards Cyber/Physical Building

Cyber

Physical Building

BIM

Physical Models

Activity Models

External

Fault, Attack, Anomaly Detect & Management

Multi-Objective Model-Driven Control

Legacy Instrumentation & Control Interfaces

Pervasive Sensing

Activity/Usage Streams

Control Plan and Schedule

Human-Building Interface

Electrical

Light

Transport

Process Loads

Occupant Demand

Fault, Attack, Anomaly Detect & Management

Multi-Objective Model-Driven Control

Legacy Instrumentation & Control Interfaces

Pervasive Sensing

Activity/Usage Streams

Control Plan and Schedule

Human-Building Interface

Electrical

Light

Transport

Process Loads

Occupant Demand
Demos

• **Time series**
 - http://smap.cs.berkeley.edu/db/plot/?stream=249&start=127070260&end=1278651060&sub=5

• **Time-series-difference scatter plot**
 - http://smap.cs.berkeley.edu/db/plot/vs.html

• **Aggregates**
 - http://smap.cs.berkeley.edu/db/plot/agg.html
Phone App

http://local.cs.berkeley.edu:8011/data/325/

http://local.cs.berkeley.edu:8011/data/325/sensor/real_power/profile
Basis for Grid-Responsive Bldgs

Portable Applications
- Modeling
- Continuous Commissioning
- Actuation and Control
- Debugging
- Personal Feedback
- Visualization

Core Services
- IS4 (storage)
- Location
- Authentication

sMAP Interface

IPv6 / 6LowPAN Wireless Mesh Network

sMAP

Proxy

RS-485

Modbus
Building Scale Monitoring Architecture