FORMLESS: Scalable Utilization of Embedded Manycores in Streaming Applications

Matin Hashemi, Soheil Ghiassi
Electrical and Computer Engineering Department
University of California, Davis
http://leps.ece.ucdavis.edu

Throughput Estimation:
Theorem: Assuming large inter-processor buffers, for any task assignment of dataflow graph G to P processors, there exists an ordering of tasks on processors such that every precedence constraint is met (possibility by overlapping iterations), and the steady state execution period (inverse of throughput) of the application is \(EP = \max\{\text{workload}(p)\} \).

Task Assignment
- Objective: minimize execution period EP
- Constraint: each processor should have at most 4 connections from and 4 connections to other processors
- Implementation: METIS graph partitioning software
- Post partitioning adjustment to meet the above constraint

Local Scheduling
- Overlap execution of different iterations of the application tasks
- Must respect the dependencies
- Increases throughput
- Increases memory requirement for inter-task buffers

Baseline Software Synthesis

Design Space Exploration

FORMLESS Application

Instatiated Task Graph

Task Assignment

Task Profiling

SEAM Simulator

FPGA Prototyped Platform
- Altera DE4 FPGA board
- 16 NiosII cores
- Instruction cache: 6KB
- Data cache: 32KB
- FIFO depth: 1024

Advanced Encryption Standard (AES)

Low Density Parity Check (LDPC)

Matrix Multiply